Quantcast
Channel: 動物世界 – PanSci 泛科學
Viewing all 594 articles
Browse latest View live

屍體為什麼會硬梆梆?——《難道他非死不可》

$
0
0

過去曾經有一陣子很流行殭屍電影,那些從棺材裡跑出來,全身直挺挺、雙手前伸跳來跳去的「陳年老屍」讓許多小朋友驚聲尖叫、噩夢連連,也在大家腦海中留下了「死人都很僵硬」的印象。其實,大多數的屍體都是全身軟趴趴,一點都不僵硬。有經驗的人便曉得,失去意識、全身癱軟的患者很難搬,通常需要兩、三個人才有辦法,這和剛死亡的狀態非常類似。

死亡二至六小時後,屍體才會逐漸變僵硬,被稱為屍僵(rigor mortis)。人體肌肉以三磷酸腺苷(Adenosine Triphosphate,簡稱ATP)為能量來源,肌肉纖維需要三磷酸腺苷才能滑動、收縮。死亡之後,細胞代謝停止無法繼續生成三磷酸腺苷,隨著三磷酸腺苷的含量越來越少,肌肉便越來越僵硬。屍僵會從眼皮、下顎、頸部這些較小型的肌肉開始,漸漸擴展到全身肌肉。屍僵在維持一至三天後,又會漸漸退去,回復放鬆癱軟的狀態。所以說,屍體僵硬的時間僅有短短幾天,並不是我們想像中的越久越硬,甚至變成陳年僵屍。

三磷酸腺苷化學式 Source: wikipedia

由於屍體具有從癱軟到僵硬,再從僵硬到癱軟的特性,讓法醫可以藉此解讀屍體。例如僵硬的屍體呈現不尋常的姿勢時,通常代表有人移動過屍體,極可能是兇殺棄屍。至於屍僵的程度則可以被用來估算死亡時間。不過屍僵的進展會受到許多因素影響,所以法醫學家做了一系列實驗來研究屍僵。為了精準控制各種變相,法醫學家用老鼠來做實驗。他們發現外界溫度對屍僵的影響很大[1]。

  • 攝氏六度時,屍體需要四十八至六十個小時才會完全僵硬,並在一百六十八個小時後才會完全消失。
  • 攝氏二十四度時,屍體在五個小時便會完全僵硬,並在十六個小時後消失。
  • 攝氏三十七度時,只要三個小時屍體即完全僵硬,並於六個小時後消失。

人體的肌肉比老鼠大很多,屍僵延續的時間也較長。法醫學家觀察了一百四十六具冷藏於攝氏四度的屍體,發現所有屍體的屍僵都能維持十天,甚至達到十六天,完全消退則可能需要二十八天[2]。中毒死亡的屍體,屍僵的時間亦不相同。番木鱉鹼(Strychnine)中毒會加速屍僵的出現及消退,一氧化碳中毒則會延緩屍僵消退的時間[3]。

另一項會影響屍僵時間的因素是運動,為什麼運動會影響屍僵呢?如同方才提到的,屍僵的出現與肌肉細胞內三磷酸腺苷的量有關,死亡之前若有劇烈運動,三磷酸腺苷被消耗掉了,屍僵便會較快形成。倘若死者被發現時手中握著刀子、頭髮或其他的東西,通常便暗示死亡之前曾經有過一番掙扎、打鬥,告訴鑑識人員要提高警覺。

參考資料:

  1.  Krompecher T. Experimental evaluation of rigor mortis. V. Effect of various temperatures on the evolution of rigor mortis. Forensic Sci Int. 1981 Jan-Feb; 17(1):19-26.
  2.  Varetto L, Curto O. Long persistence of rigor mortis at constant low temperature. Forensic Sci Int. 2005 Jan 6; 147(1):31-4.
  3. Krompecher T, Bergerioux C, Brandt-Casadevall C, Gujer HR. Experimental evaluation of rigor mortis. VI. Effect of various causes of death on the evolution of rigor mortis. Forensic Sci Int. 1983 Jul; 22(1):1-9.

e5729d6d-f718-4171-bf15-1ed57d12504f

本文摘自《難道他非死不可:現代福爾摩斯解密死亡醫學》,由商周出版。

延伸閱讀:

證據會說話:鑑識科學大剖析

 

The post 屍體為什麼會硬梆梆?——《難道他非死不可》 appeared first on PanSci 泛科學.


新世紀福音菊虎誕生!以EVANGELION命名的臺灣新種菊虎

$
0
0

文/蕭昀

臺灣又有新種菊虎!?繼2015年以賽德克族、鄒族命名發表的賽德克狹胸菊虎(Stenothemus seediq Hsiao, 2015)、鄒狹胸菊虎(Stenothemus cou Hsiao, 2015)以及獻名給臺大昆蟲系楊平世教授的平世異菊虎(Lycocerus yangi Hsiao & Okushima, 2015),2016年元月六日,由臺大昆蟲系大學部學生蕭昀及其指導教授楊平世教授、柯俊成教授和日本倉敷市立自然史博物館館員同時為亞洲菊虎科分類學專家奧島雄一博士發表了四種新種台灣菊虎。

新種菊虎─福音小黑異菊虎(Lycocerus evangelium Hsiao & Okushima, 2016)

什麼?你想問這次的新種叫做什麼名字?哼哼……残酷な天使のように~~少年よ 神话になれ~~阿勒,耳邊響起熟悉的旋律,まさか(Masaka)!?

看官您猜的沒錯,本篇研究論文的其中一種新種即以日本動畫史上最偉大的作品之一,同時影響日本流行文化甚多的《新世纪福音戰士》(日文:新世紀エヴァンゲリオン,英文:Neon Genesis Evangelion)來命名,這種幸運的昆蟲被命名為福音小黑異菊虎(Lycocerus evangelium Hsiao & Okushima, 2016),種小名為Evangelion的拉丁字Evangelium,那為何選擇這個種類來以Eva命名呢?

source:photozou.jp

source:photozou.jp

原來呀,Evangelium為拉丁文的好消息、福音”Good News”之意,又這種小型的菊虎早前一直被誤鑑定成另一種外型與之相似的小青黑異菊虎(Lycocerus nigripennis( Pic, 1938)),在本篇研究中,研究團隊檢查了大量的標本後確認這是一個新種,這個新發現對於整個研究團隊的不啻為一大福音Good News。另外三個新種分別為以採集者鍾奕霆先生、馬場金太郎博士命名的奕霆紋繪異菊虎(L. yitingi Hsiao & Okushima, 2016)、金太郎小黑異菊虎(L. kintaroi Hsiao & Okushima, 2016)以及有橙紅色前胸背板的橙胸小黑異菊虎(L. aurantiacus Hsiao & Okushima, 2016)。

小青黑異菊虎 (Lycocerus nigripennis (Pic, 1938)),與福音小黑異菊虎外型非常相似,必須從外生殖器的構造去區分。

本研究成果發表在今年元月出刊的國際期刊──歐洲分類學期刊《European Journal of Taxonomy》,本研究前前後後研究檢視了超過400隻標本,一大部份來自各自然史博物館館藏,包括英國、美國、日本、法國、瑞士、臺灣等地標本典藏機構,突顯自然史博物館對於生物分類學研究的重要性。

此文由國立臺灣大學昆蟲學系大四生蕭昀撰寫,響應PanSci 「自己的研究自己分享」,以增進眾人對基礎科學研究的了解。

參考文獻:

  • Hsiao Y., Okushima Y., Yang P.-S. & Ko C.-C. 2016. Taxonomic revision of the Lycocerus hanatanii species group (Coleoptera, Cantharidae), with the description of new species from Taiwan. European Journal of Taxonomy 170:1–33.
  • European Journal of Taxonomy

 

The post 新世紀福音菊虎誕生!以EVANGELION命名的臺灣新種菊虎 appeared first on PanSci 泛科學.

笛卡爾與三葉蟲有什麼關係?

$
0
0

文:俞欣豪( 認知科學博士,目前是澳洲莫納許大學 (Monash University) 的研究員。專長是靈長類動物的視覺系統。)

01

source:wikimedia

法國哲學家笛卡爾在一六三七年發表了《幾何學》(La Géometrie)。這篇長文是《方法論》的一部份,它首創分析幾何學,是西方文明最重要的著作之一。不過這本書中的一張插圖有錯,一直要等到將近四個世紀後的公元兩千一二年才被發現。奇怪的是發現這個錯誤的人,不是數學家,不是歷史學家,而是研究三葉蟲的古生物學家。

為什麼古生物學家會鑽研笛卡爾?笛卡爾跟三葉蟲到底有什麼關係?

1-qzZis4tPloPNhpzTwPCt-Q

被發現有錯誤的圖。來源:笛卡爾《幾何學》的第二冊

這張有錯誤的圖出現在《幾何學》的第二冊。笛卡爾在這裡解釋如何繪製一種我們今日稱為「笛卡爾橢圓」(Cartesian ovals)的平面曲線。為什麼笛卡爾要大費周章研究這種曲線?這個問題不是很容易解答,連笛卡爾自己都沒有在書裡解釋清楚,我們要稍微瞭解一下笛卡爾的學術生涯才行。

跨足多領域的學術生涯

笛卡爾在一六三七年發表了《方法論》(Discours de la méthode)。他在這本書裡討論如何用理性思維精確地獲得知識。眾所皆知的「我思故我在」,就首次出現於《方法論》的第四講。有些介紹笛卡爾的文章太過於強調《方法論》裡抽象的哲學思維,讓讀者以為笛卡爾用《方法論》當工具,得到最重要的成果,是證明了上帝與自我的存在。其實《方法論》只是導論,笛卡爾在《方法論》後附上三篇長文,用來展示這種思考方式得到的成果。這三篇長文分別是:《氣象學》(Les Météores)、《折光學》(La Dioptrique)、與《幾何學》(La Géométrie),這說明了笛卡爾相信他的方法學,主要的應用是在於自然科學與數學。

笛卡爾的思考是非常深刻而且多樣化的,這三篇長文討論三個看似獨立的主題,其實有許多共同的脈絡。以《折光學》為例,笛卡爾在《折光學》的第二講裡推導出了光波折射,入射角與折射角之間的數學關係[1]。這是一個了不起的成就,因為它是解釋許多自然現象的關鍵。例如《氣象學》就利用這個公式解釋彩虹的形狀。更重要的是在《折光學》裡,笛卡爾把折射定律運用在人體最重要的光學器官 — 眼睛。他解釋了影像是如何投射在視網膜上,推測近視與遠視的成因,並且討論如何用透鏡彌補眼睛構造天生的不足。為了看到肉眼不能看到的東西,笛卡爾分析了放大鏡、望遠鏡、顯微鏡的原理。《折光學》展現出來的務實的笛卡爾,他追隨法蘭西斯·培根等人的論點,致力於發展一種為人類需求服務的知識。

講起務實,笛卡爾可能比大部分人的想像還要務實的多。《折光學》最後一講描述一種機器,在理論上可以自動磨出前所未有的高品質鏡片。事實上在《折光學》發表之前,笛卡爾就已經花了超過十年的時間研發這種機器。在一六二零年代,笛卡爾還住在法國的時候,他就跟工匠合作試圖磨出特殊設計的鏡片。體弱多病,一天到晚躲在房間裡的笛卡爾,甚至在工廠裡親自監工。一六二九年笛卡爾移居荷蘭,不過還是不忘從遠方監督法國工廠的進度。用我們今日的話講,笛卡爾是十七世紀的新創公司創業者。當時的產業界跟今日沒有很大的差別,也是有許多競爭者,有非常高的風險。笛卡爾花了大筆投資人的錢,雖然製造出了一些產品的原型,不過品質達不到期望的標準,最後放棄。在《折光學》的最後一章,笛卡爾乾脆把他的商業機密用開源(open source)的形式提供給歐洲學界,希望有別人能夠完成他的夢想。

1-H1hYpVD24LGATGAjYyPlgg

笛卡爾所設計的機器

透鏡在從中古時代被就用來矯正視力[2],所以磨透鏡在笛卡爾的時代並不是什麼新鮮事。不過十七世紀初,透鏡突然變成了不折不扣的高科技,這是因為伽利略這些科學家開始發展出高倍數望遠鏡。這些新的儀器除了有天文學的應用外,還有軍事價值,立刻就受到各界的注意。

完美的形狀,不完美的透鏡

當時的笛卡爾掌握了這方面的關鍵技術:他推導出來的折射定律,讓他成為最早能用分析性思維,探討透鏡跟視覺關係的人。這跟當時磨鏡片的工匠,用經驗法則行事,有很大的不同。此外,笛卡爾發明了分析幾何學。他把幾何與代數這兩個原來不相關的學問結合起來,發現許多困難的幾何問題,都能迎刃而解。這些發現最後發表在《幾何學》裡。

《幾何學》是數學史上最重要的著作之一,它的主要內容看似非常理論化,是要解決古希臘數學的幾何曲線分類問題,不過笛卡爾也沒有忽略分析幾何在解決實際問題上的威力。《幾何學》第二冊裡有相當的篇幅討論各種橢圓形的畫法,其實那些都是光線在不同介質裡折射問題的解。《幾何學》的這個部分,是在發展設計透鏡的數學工具。

十七世紀使用的光學鏡片,跟我們熟悉的放大鏡類似,都是球面鏡片。也就是說這些鏡片雖然不是球體,不過它們的兩個曲面,都是球面的一小部分。球面鏡片容易磨製,而且希臘人認為球體是完美的形狀,不難理解為什麼用在鏡片上。笛卡爾用他自己發明的數學工具分析成像,發現球面鏡片有重大的缺點,那就是遠方傳來的平行光,在球面鏡片的彎折後,不會聚焦在同一點上,因此造成模糊的影像。這個現象我們今日稱為「球面像差」(spherical aberration)。

笛卡爾推導出非球面鏡片的公式,用來解決球面像差的問題。根據史料,歷史學家相信笛卡爾用手工磨片的方法,製造出了少量的非球面鏡片,但因為精確度的問題,這些鏡片並沒有比一般的球面鏡片優秀。笛卡爾相信他設計的機器可以取代人工,可以大量的產生精確的非球面鏡片,不過理論畢竟跟實際有許多差距,笛卡爾花了十五年的時間跟不同的工匠合作,用盡了創業基金,還是沒有辦法實踐他的自動磨片機。

《折光學》出版後在歐洲的科學界引起了研究非球面鏡片的風潮,許多科學家都加入研發非球面鏡片的行列。例如說在一六九零年荷蘭科學家惠更斯(Christiaan Huygens)發表了《光學理論》Traité de la Lumière),在這本書裡,他不但描述了光的波動理論,還推導出了跟笛卡爾不一樣的非球面鏡片公式。牛頓也曾經試著研磨非球面鏡片,不過因為牛頓對於光學有更深入的了解,他發現校正球面像差並不能解決所有的光學問題[3],因此非球面鏡片並沒有笛卡爾想像中的完美。非球面鏡片的製成技術因為難度高,久久沒有突破,科學家漸漸把注意力轉移到反射望遠鏡以及其它光學科技上。非球面透鏡的問題,慢慢的被遺忘了。令人欣慰的是實踐笛卡爾構想,的確是有成功的例子。《折光學》發表三十年後的一六六七年,英國科學家 Francis Smethwick 第一次磨出高品質的非球面鏡片,因此製造出非常高效能的望遠鏡,不過他的設計沒有普及化。

1-YUOOx8-2oW5GxhPUNjDEhA

摩洛哥出土的三葉蟲 Erbenochile erbeni 化石。注意它精密的眼睛構造。圖出自 Fortey, R. & Chatterton, B. (2003) A Devonian trilobite with an eyeshade. Science 19, 1689.

由古老三葉蟲發展出新突破

笛卡爾的非球面鏡片沒有普遍化,不過奇怪的是演化這個「盲目的鐘錶匠」[4]居然在冗長的生物演化史中,製造出了非球面鏡片。這就得提起三葉蟲了。三葉蟲最早出現於五億三千萬年前,整整有三億年的時間,是地球上最成功的動物之一。三葉蟲的種類繁多,有超過上萬種物種。一般逛博物館的人對三葉蟲的印象是大型蟑螂。常見的三葉蟲化石,眼睛小而且構造看似原始,多數人大概不會想到有些三葉蟲是靠視覺捕殺獵物的動物。不過有些三葉蟲有非常精細的椱眼構造,吸引了視覺科學家的注意。

視覺科學跟古生物學沒有太大的重疊,那是因為動物眼睛裡的光學元件,如角膜與水晶體,大多是由細胞組成,這種軟組織不會留下化石,因此無法研究。三葉蟲是個例外。它們的複眼裡,折光的元件是生物體合成的方解石,是礦物,因此保留到今日。這是一個讓我們探索古生物的視覺系統的難得機會[5]。一九七五年古生物學家與物理學家合作,開始研究三葉蟲複眼裡透鏡的幾何結構,他們發現有兩個三葉蟲物種,透鏡的形狀跟笛卡爾、惠更斯提出的非球面鏡片,有驚人的相似性,因此推測它們的功能是對抗球面像差,用來增加視覺的感光度。

1-sVm77kivndYol6TmGPKHnw

摩洛哥出土的三葉蟲 Erbenochile erbeni 化石。注意它精密的眼睛構造。圖出自 Fortey, R. & Chatterton, B. (2003) A Devonian trilobite with an eyeshade. Science 19, 1689.

造物者的偏心?

這篇文章討論的主題實在是有點隱晦,古生物學,光學,數學史這些內容,應該是只有學者會有興趣。不過你要是用 Google 搜尋三葉蟲眼睛的資訊,就會發現有些基督教創造論的網站,在講三葉蟲。創造論信徒翻遍了所有科學文獻,不論什麼隱晦的內容,都可以拿來作為反對演化論的依據,連三葉蟲的眼睛構造這麼冷門的主題都不放過。這些文章通常充滿錯誤的科學知識,與邏輯謬誤,不值得在這裡詳細檢討。最重要的地方在他們誤解了笛卡爾非球面鏡片的意義。創造論者說因為三葉蟲的透鏡結構類似笛卡爾用數學推導出來的「完美鏡片」,所以可以推論這種眼睛構造,一定是完美的造物者設計出來的,不可能是演化的結果。

第一個問題是只有少數的三葉蟲物種有這種眼睛,不是所有的三葉蟲都有,因此我們得問為什麼造物者這麼偏心,給別的三葉蟲不完美的眼睛。更重要的問題是是笛卡爾的鏡片,是為了解決特定問題而設計出來的,用在顯微鏡與望遠鏡上,是理論上的最佳解[6],但作為生物的視覺器官,其實不是個好設計。三葉蟲用方解石作為透鏡,不像我們的水晶體可以依照需求改變形狀,是非常嚴重的缺陷,是盲目的演化過程陷入的死路,非球面透鏡是修正這種缺陷不得不演化出來的設計。三葉蟲的視覺系統比早期古生物學家的推測精密,不過跟現代動物比起來仍然是非常的原始,有許多嚴重缺陷,並不是創造論者所說的「完美眼睛」。

有點諷刺的是笛卡爾寫《折光學》,正是因為他分析人類眼睛的光學性質,發現它有許多缺陷。笛卡爾相信理性與科學知識,可以補償天性的不足。如果造物者給我們設計了完美的眼睛,那笛卡爾就不用研究非球面鏡片了。

上圖比較三葉蟲物種 Dalmanitina socialis 的透鏡構造,跟笛卡爾《幾何學》裡的插圖的相似性。有個令人擔心的地方,是這兩個東西的相似性,是不是高到在光學上有意義的程度。二零一二年出版的一篇論文對這個問題提出質疑[7],因為作者發現笛卡爾的插圖畫錯了!笛卡爾插圖中的非球面鏡片,底端有個尖角,不過如果你照著笛卡爾文字的指示做圖,就會發現正確的解答應該沒有那個尖角才對[8] 。Dalmanitina socialis 的透鏡下端有個小尖角,因此跟笛卡爾設計的透鏡其實有重要的不同。論文的作者猜測它跟球面像差無關。它的功能可能比較類似於我們用的雙焦眼鏡(bifocals):它的兩個焦點,可以降低方解石透鏡缺乏變焦功能所帶來的問題。創造論者愛講的「完美三葉蟲眼睛」,至少在 Dalmanitina socialis 這個例子上不能成立[9]。

這篇文章的標題叫「笛卡爾與三葉蟲」,你現在知道這兩個主題的關聯性,其實相當薄弱,可能只是個巧合罷了。不過笛卡爾在光學上的洞見,的確是在視覺科學上,有重要的影響。我們繞了這麼大一個圈子,多多少少還是值得的。

1-ix7VGt6hGBoD5y_aRGKSqw

非球面鏡片的三度空間模型。左邊是笛卡爾《幾何學》裡描述的鏡片。右邊是惠更斯《光學理論》裡描述的鏡片。兩者最大的差別在於笛卡爾的鏡片兩面都是非球面曲線,而惠更斯的設計只有一面是非球面。

探查科學的歷史,有一種方法是追問科學理論是在什麼文化與思想背景下形成的。另一種方法是試著親自動腦動手,追隨前人的思路。笛卡爾與惠更斯兩人都是難得的天才,是我們一般人難以相比的。不過隨著知識的進展,以及教育科技的普及化,今日的我們只要善用笛卡爾推導出來的折射公式,要獨立推導出笛卡爾與惠更的鏡片公式,完全不費吹灰之力。我只花了一個下午的時間,靠著數學軟體 Mathematica 的幫忙,就得到了笛卡爾思考多年才得到的結果。有趣的地方是三度空間印表機在這幾年已經進步到了可以印製光學元件的程度。也許幾年之後,我們只要下一個指令,就可以實體擁有這些鏡片,到時所有的人都可以輕易廉價的實驗各種各種光學元件。也許這是笛卡爾在《折光學》裡構想的機器,最終極的實踐吧。

1-_PZXxArQ9MzVO8__jV7Zyg

用三度空間印表機列印出笛卡爾鏡片的模型

註釋:

  • [1] 也就是所謂的「司乃耳定律」(Snell’s Law)。笛卡爾並不是第一個推導出這個定律的人,不過這裡他用跟前人不同的方法得到同樣的結論。
  • [2]小說《玫瑰的名字》的讀者也許記得主角威廉,是十四世紀的僧人,就帶著一副眼鏡。
  • [3] 例如說牛頓發現「色差」(chromatic aberration),也會影響成像的品質。色差造成的問題不能用笛卡爾的光學解決。
  • [4] Dawkins, R. (1986) The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe without Design.
  • [5] 最新的科技甚至讓科學家重建三葉蟲眼睛裡面感光神經的結構,三葉蟲因此是我們能研究最古老的視覺神經系統。見 Schoenemann, B. & Clarkson, E. N. K. (2013) Discovery of some 400 million year-old sensory structures in the compound eyes of trilobites. Scientific Reports 3, e1429。
  • [6] 光學理論要等到牛頓的時候才開始成熟。笛卡爾的光學基礎其實非常的原始。因為他沒有考慮到色差等因素,他的鏡片嚴格說起來並不完美。不過三葉蟲的水底視覺,色差的問題並不嚴重,在這裡可以忽略。
  • [7] Egri, A. & Horváth, G. (2012) Possible optical functions of the central core in lenses of trilobite eyes: spherically corrected monofocality or bifocality. J. Opt. Soc. Am. A 29, 1965.
  • [8] 笛卡爾在《折光學》裡也有一張插圖描述非球面透鏡,這張插畫就沒有那個尖角。可見笛卡爾只是在準備《幾何學》插圖時,犯了一個小錯誤。我跟 Horváth 教授通過信,他說這個錯誤的確是在幾百年之內沒有人注意到,一直要等他用數學方法模擬三葉蟲的眼睛結構時才無意發現。
  • [9] Crozonaspis 三葉蟲透鏡跟惠更斯透鏡的相似性,因為有比較直接的實驗證據,至今仍然被科學界認為是有對抗球面像差的功能。

參考資料:

  • Ribe, N.M. (1997) Cartesian optics and the mastery of nature. Isis 88, 42–61.
  • Burnett, D.G. (2005) Descartes and the hyperbolic quest: lens making machines and their significance in the seventeenth century. American Philosophical Society.

本文轉載自作職業科學家的業餘科學者

The post 笛卡爾與三葉蟲有什麼關係? appeared first on PanSci 泛科學.

「蛙」招百出,有哪些威猛的超級蛙?

$
0
0

嘿YO!你可以再近一點~ © Flickr_Charles

跟著本週的動畫日,我們來看看小小不起眼、濕濕滑滑的青蛙們,可以有甚麼拿手本領呢?

黑黃相間的搶眼飛蹼,是黑掌樹蛙的特徵。 Photo from Tim Laman

黑掌樹蛙

當人們談起會飛行的兩爬動物時,絕不會忘記天堂金花蛇(Chrysopelea paradisi)和飛蛙這一對搭檔!從馬來西亞到印尼西方的熱帶雨林裡,有兩種堪稱蛙族最響亮的明星,能夠劃破夜空的一對璀璨綠寶石,一種叫黑掌樹蛙(Rhacophorus nigropalmatus)、另一種叫黑蹼樹蛙(Rhacophorus reinwardtii)。

乍看之下,牠們就和一般東南亞的大型樹蛙一樣,但每當牠們縱然一躍、設法逃離掠食者時,我們就能發現牠那黑得發亮的飛膜:位於四肢趾間發達的蹼。雖然不是真的翱翔天際,但黑掌樹蛙可以靠這個方法滑翔超過15公尺!對生物學家來說,能夠發現這種青蛙更是無盡的感動。勇闖馬來半島12年、間接激起《物種原始》發行的博物學家 – 華萊士(Alfred Russel Wallace),就是當年採集第一隻標本的人。因此,黑掌樹蛙的英文名字就是華萊士樹蛙呢!

________________________________________

Photo from Wilfried Berns

金黃箭毒蛙

說起自然界最搶眼的警戒色動物,應該非箭毒蛙(Dendrobatidae)莫屬了。這一類住在中南美洲熱帶雨林的嬌小蛙類,不僅種類繁多、體色更是千變萬化,其中尤以金黃箭毒蛙(Phyllobates terribilis)搶下毒性之冠。

箭毒蛙的皮下可以分泌箭毒蛙毒素(batrachotoxins),這種屬於類固醇類的生物鹼,大多具有調節細胞膜上鈉離子通道開闔的功能。部分毒素可以持續地活化通道,使神經或肌肉細胞保持去極化的狀態,甚至可能造成心臟衰竭的危險。

金黃箭毒蛙的毒素量高出其他箭毒蛙20逾倍,一隻金黃箭毒蛙的毒素量高達1900毫克。換算一下,這樣的毒素量可以致死20000多隻的實驗室小鼠;對人類來說,很有可能足以帶走10人以上的性命。值得一提的是,科學家在20多年前發現箭毒蛙的毒素非自己合成的。因為人為圈養下箭毒蛙們都喪失了毒性,除非又給予野外狀況下具有毒性的獵物,才能回復到懷有劇毒的樣子。我們把這樣子轉化獵物(食物)毒素到自己體內、成為自身防禦性武器的動物,稱作「截存者(Sequesterers)」。

________________________________________

骨刺在壯髮蛙身上不是疾病,而是防身利器 Photo from MailOnline

壯髮蛙

就像X戰警裡的金剛狼一樣,這種壯髮蛙(Trichobatrachus robustus)有隱藏的骨頭爪子。不太一樣的是,這種青蛙必須打斷自己的骨頭來延伸出他的武器!平常的時候,爪子是包埋於一團結締組織當中。

骨頭的一端藉由一大塊膠原蛋白連接著腳趾頭上另一塊小骨頭,另一端則連接著肌肉。哈佛大學的研究團隊認為當青蛙遭受攻擊時,肌肉一收縮、爪子便突刺出蛙的腳趾頭來自衛。不像可收縮式的爪子,這些爪子是由骨頭組成(而不是常見的角質),而且是直接刺穿皮膚出來!

當初發現這項本領的 David Blackburn,就是在2008年喀麥隆採集青蛙時,由指間流出的鮮血發現這件事呢。

________________________________________

新圖片

雄蛙的護卵行為,可以看這篇的研究文獻(Vockenhuber et al. 2008)。Photograph by U. Karpfen

網紋玻璃蛙

玻璃蛙是一類中南美洲青蛙的俗稱,分類上屬於瞻星蛙科(Centrolenidae)的成員,當然,不是裏頭每個屬的肚子都一樣雪亮透明。有趣的是,影片中的主角,網紋玻璃蛙(Hyalinobatrachium valerioi)有兩個和其他玻璃蛙不一樣的地方,第一是這個屬的玻璃蛙多是由雄蛙負責保護卵 (雌蛙在葉面上產完卵就沒她的事了)。

第二是這個種的雄蛙是24小時的全職褓父(其他同屬物種多只有在夜間守候著卵),因為這樣的護幼行為,使這種蛙卵的孵化成功率大幅提升。不只影片中的胡蜂,某些品種的螞蟻、甚至是螽斯都是這種葉面育嬰室的掠食者,雄蛙幾乎會整天待在葉面上,部分身體會覆蓋其中一團卵團。

更厲害的是,雄蛙還能一次同時守衛七團卵團,分別來自不同的雌蛙。一旦有危險靠近,老爸就會使出踢腿的武功來嚇退飢腸轆轆的掠食者,還有人記錄到把入侵者吃下肚的紀錄呢!

________________________________________

呆呆傻傻的猴樹蛙很可愛吧 Photo from Pin it.

巨猴樹蛙

在這次負北極振盪發威、全台瘋迷賞雪之前,可別忘了2015年可是年度聖嬰大年,11月時氣溫攀升了到均溫3度之多,年尾時巴黎的氣候峰也會討論出一些近遠程的減碳目標。身處氣候變遷劇動的地球,生活中離不開水的青蛙們,也得有一套適應多變氣候的本事。

來自南美洲的巨猴樹蛙(Phyllomedusa bicolor)晚上覓食好不快活,但到了早上,炙熱的陽光冒出頭,牠們卻不像其他青蛙,絲毫沒有想要躲避的意味。巨猴樹蛙們就這樣趴在枝條上、維持保水的姿勢,讓陽光持續地蒸散掉身上的水分!?原來,為了防止脫水,牠們會由眼睛後方的腺體分泌蠟質的「防曬乳」,然後手腳抹著分泌物塗滿全身,一處都不會遺漏。牠們獨門的「防曬乳」,包含了數百種生化合物,有些還有抗感染和止痛的藥效呢!

________________________________________

除了上述這五種蛙類奇葩,蛙族超人還多的是呢!像是西高止山的舞蛙們、有著吸血鬼獠牙的樹蛙蝌蚪、以嘴當耳的加氏賽舌蛙、吃下荊棘惡魔果實的變形雨蛙、骨頭武裝色硬化的巴西金蛙、比讚來刺你的日本Otton frog,智利和澳洲的胃育蛙,一個用鳴囊、一個用胃來養小孩,也很獵奇。

最後2015年暑假的研究,來自巴西的布魯諾盔頭蛙(Aparasphenodon brunoi)、和格林寧樹蟾(Corythomantis greeningi),其頭骨就是一副刺蝟樣,棘刺裡頭佈滿了毒腺,可以主動分泌毒液,而且還比當地的矛頭蝮毒液還要毒!總之,我們對大自然充滿天馬行空的想像一點也不為過,因為演化總是有辦法讓某些高手們拔得頭籌。

The post 「蛙」招百出,有哪些威猛的超級蛙? appeared first on PanSci 泛科學.

迷你絨毛發電機:縱紋腹小鴞——《BBC知識》

$
0
0

縱紋腹小鴞_Page_3_Image_0001

作者/麥特‧斯溫(Matt Swaine)
譯者/賴毓貞
攝影/安迪‧勞斯(Andy Rouse)

二號巢箱中的對峙畫面讓所有人都睜大了眼:倉鴞(Tyto alba)進入黑漆漆巢箱的唯一方法,就是擠過極小的入口,再用胸骨頂著彎壁在狹小的彎道中匍匐前進。動態感應攝影機捕捉到入侵者的凶狠目光,牠的出現也讓縱紋腹小鴞(Athene noctua)媽媽退到角落。

不過令人驚訝的是,縱紋腹小鴞媽媽隨即為了保護寶貴的四顆蛋,奮不顧身地發動攻擊。曾有人形容縱紋腹小鴞是鳥類中一流的父母親,而影片中的鳥媽媽果然名不虛傳,牠猛烈攻擊體型是牠兩倍的入侵者。就在倉鴞撤退之後不久,小鴞媽媽隨即恢復平靜繼續孵蛋,不過當雛鳥孵出之後的第六天,倉鴞又回來了。

「當時倉鴞一定聽到了雛鳥的叫聲,」設立英國縱紋腹小鴞計畫同時也負責監看英國威爾特郡巢箱的艾蜜莉‧喬屈(Emily Joachim)表示,「那附近有很多空巢箱,因此我們很確定倉鴞並不想在那繁衍後代,牠知道裡面有雛鳥,而這一次的打鬥令人不忍卒睹。牠用翅膀覆蓋全部的雛鳥,接著用腳挑起一隻,在接下來的打鬥中,倉鴞讓一隻雛鳥受傷,並拽著另一隻離開巢箱。」

縱紋腹小鴞_Page_4_Image_0001

貓頭鷹獨家日誌

如果沒有攝影機,喬屈可能會朝更駭人的方向來思考雛鳥失蹤事件,「由於巢箱中沒有其他食物的影子,因此我一開始以為這個地區捕獵不易,所以父母可能把其中一隻雛鳥餵給其他雛鳥當食物,」她表示,「不過影片告訴我不是這麼一回事。」

在英國,喬屈屬於一群特立獨行的研究團隊,研究人員正嘗試了解自1987年至今,縱紋腹小鴞的族群數量估計減少65%的原因。這個物種於一百多年前引入英國,野放於肯特郡和北安普敦郡,牠的非原生種身分成為納入英國有效保育計畫的最大絆腳石。

「如果你看到保育倉鴞的費用,再看看分配給縱紋腹小鴞的資源,就會發現根本不能比較。」負責監看英國柴郡巢箱的洛伊‧李(Roy Leigh)提到,「只有少數人在照看縱紋腹小鴞,雖然牠不是原生種,不過牠找到了適當的棲位,而且大家都喜歡牠。牠們有吸引人的臉蛋,而且很有特色,如果你讓縱紋腹小鴞在英國鄉間消失,大家都會想念牠的。」

未命名 -1

迷你絨毛發電機

的確,牠兇猛的眼神,總是蹙著的眉頭,再加上非凡的魅力,讓許多為縱紋腹小鴞奔波的人說,就是這些特色吸引他們的。即使是嚴肅的鳥類學家也無法抗拒地形容牠們為「可愛、活躍的袖珍型發電機」,縱紋腹小鴞有驚人的活力,你可以在雨中看到牠們滑稽地在地面急奔來追捕無脊椎獵物,牠們的頭會像盒子中彈跳出來的小丑一般上下跳動。

「我收集了縱紋腹小鴞在滂沱大雨中捕獵的大量影片,牠們的羽毛都溼透了,而倉鴞不會這麼做,」喬屈解釋,「在2012年延長的雨季中,成年的倉鴞無法外出獵食,使得雛鳥死亡率高得嚇人。倉鴞的食物主要是小型哺乳類,縱紋腹小鴞則不同,牠們因為多樣的食物而獲益,牠們可以吃小型鳥類和哺乳類,也可以吃昆蟲、蜘蛛和蚯蚓。就算到了繁殖季節,牠們仍然一整天都出乎意料地活躍,令人不禁納悶牠到底什麼時候就寢。」

縱紋腹小鴞_Page_6_Image_0001

不過,許多保育人士認為,飲食中有高比例的無脊椎動物,可能就是縱紋腹小鴞族群減少的原因。「我們開始檢視使用在牛身上的動物用藥,」李表示,「我曾記錄過縱紋腹小鴞會翻動牛糞來尋找躲在下方的甲蟲。使用在牛隻上的藥物顯然也會出現在牛的排泄物中,而這正是讓人開始質疑的問題。」

然而在英國養殖業相當密集的林肯郡中,縱紋腹小鴞依然活得好好的,巢箱設計者(參見〈謝帕德的巢箱設計〉一欄)鮑伯‧謝帕德(Bob Sheppard)說,「這裡的縱紋腹小鴞數量並未減少,如果你觀察到畜牧業使牠的數量減少,那麼這裡顯然也會發生相同的事,」他表示,「每個人都在回頭檢視農業生產過程,農業用藥的確對清光所有昆蟲來說相當有效,不過沒有人可以量化它們對縱紋腹小鴞的影響。」

知識就是力量

目前英國未曾針對縱紋腹小鴞進行妥善調查,如果保育人士要了解問題的根源,勢必必須匯編族群及分布的基準圖,而這正是巢箱為什麼這麼重要的原因。巢箱不僅做為縱紋腹小鴞的窩,也讓保育人士得以觀察繁殖行為,這在天然的鳥巢中幾乎是不可能的任務。

「英國林肯郡仍保有許多老倉庫,吸引縱紋腹小鴞去尋覓小型哺乳動物,因此我們把巢箱放在這裡,牠們很快就入住了。」謝帕德表示,「如果牠們在樹上築巢,我們對牠們的了解就相當有限。而現在我們能夠接近牠們,將父母和雛鳥戴上腳環,計算蛋的數量。」

縱紋腹小鴞_Page_5_Image_0003

當調查志工再次捕捉戴有腳環的縱紋腹小鴞時,就更能了解牠們的習性。「我們發現縱紋腹小鴞有驚人的棲地忠誠度,」謝帕德透漏,「牠們在半徑90公尺的棲地範圍內取得生活所需的所有事物,除非倉庫倒塌或興建新倉庫,牠們很少到其他地方。如果強迫牠們離開一個區域,那麼你很有可能再也找不到牠們。」

在英國柴郡的不同的棲地中,李的計畫著重於果園築巢的縱紋腹小鴞。在檢視20世紀前半的觀鳥日誌之後,他注意到英國果園位置與縱紋腹小鴞分布區域有著密切關係。李表示,「果園是很棒的地方,因為樹有許多樹洞,構成完美的築巢地點,而且果實會吸引無脊椎動物、小型鳥類和哺乳類,這些都是縱紋腹小鴞的食物。」他目前正在推動社區果園計畫並設置巢箱,並請蘋果酒製造商思考如何讓果園更適合縱紋腹小鴞居住的方法。

目前的調查資料僅涵蓋零星幾處,而且要發現縱紋腹小鴞的蹤跡是很難的,想要了解英國縱紋腹小鴞確實的族群資料可說是希望渺茫。英國鳥類信託(BTO)從一份歐洲的鳥鳴調查紀錄得到啟發。如果安置好錄音設備然後等待鳥兒出聲,顯然很難區分出安靜的貓頭鷹和物種消失的差別。如果加上一個誘導訊號,「主動重覆播放別的區域錄到的縱紋腹小鴞叫聲,通常很快就可以得到反應。」英國鳥類信託的蓋瑞‧克勞立(Gary Clewley)解釋,「目前已經在比利時、荷蘭和西班牙進行這種重覆播放的調查,這些國家也建立了扎實的族群估計數據,這些結果可以幫助我們尋找最佳的保育區域。」

縱紋腹小鴞_Page_8_Image_0003

成為原生種的奮戰

今年已在林肯郡展開領航計畫,當地的樹木不多,因此天然的築巢點也不多,大多數的縱紋腹小鴞在廢棄倉庫的巢箱中築巢,使研究人員能夠清楚掌握族群數量。如果這個方案在英國各地執行,就可能可以建立出英國第一份可靠的族群資料,不過這些能夠轉為實際的保育效益嗎?

「由於縱紋腹小鴞並非原生種,因此很難說服相關單位將僅有的保育資源挪給牠們使用,儘管牠顯然是英國相當受喜愛的鳥類。」克勞立表示,「英國鳥類信託的角色是盡可能提供最好的族群數據,讓其他人能夠有更多資訊來下決定。而且縱紋腹小鴞在歐洲的數量正在減少,因此英國的經驗或許有助於歐洲大陸的保育工作。」的確,就在跨越英吉利海峽、相距僅僅40公里的法國北部,縱紋腹小鴞已列為優先保育的物種。

了解縱紋腹小鴞的繁殖和覓食生態,可能也能供給大量關於其他物種的資料,李說,「縱紋腹小鴞影響的棲位與倉鴞不同,牠們是更好的環境健康指標,牠們什麼都吃,所以能夠告訴我們英國野生生物的整體概況。」

謝帕德夢想有一天,每個國家都有各自的縱紋腹小鴞擁護團體,「我們需要進行那些曾為倉鴞做過的工作,並且把英國各地的計畫連結起來。」他解釋,「因為縱紋腹小鴞不會閒逛那麼遠,牠們需要棲地的連結,如此一來,當每年年輕的縱紋腹小鴞被趕出門時,牠們能夠離開家並尋到屬於自己的配偶和領地。」

「我尤其希望可接受縱紋腹小鴞成為英國原生種,」他補充道,「許多鳥類團體瞧不起縱紋腹小鴞,因為牠們與灰松鼠和兔子一樣分類為非原生種。不過曾見過縱紋腹小鴞的人都會告訴你,這些鳥自身就是奇蹟。」

● 別錯過喬屈的縱紋腹小鴞影片!
→ http://www.discoverwildlife.com

【完整內容請見《BBC知識國際中文版》第53期(2016年1月號)。版權所有,轉載請註明出處。】

The post 迷你絨毛發電機:縱紋腹小鴞——《BBC知識》 appeared first on PanSci 泛科學.

中興大學解剖臺灣首次發現大王魷魚

$
0
0

11日晚間興大解剖大王魷魚

充滿傳奇與神祕色彩的大王魷魚日前(1/11上午)出現在宜蘭外海!這是臺灣首次有實體標本的紀錄,漁船意外捕獲後立即連絡相關研究人員確認為大王魷魚,當天即由清大生科院焦傳金教授團隊協助運送至中興大學生科系,由國際頭足類專家盧重成講座教授團隊與吳聲海教授團隊偕同清大團隊11日晚間11點多開始在中興大學漏夜進行解剖與形質測量,經過4個多小時的解剖,結果發現這是一隻珍貴的成熟雄性標本,在全世界的大王魷魚紀錄中,少有如此完整而新鮮的雄性個體標本,因此研究人員都相當興奮。

這隻大王魷魚身體長度約80公分,全長卻達4公尺長,這是因為大王魷魚的觸腕特別長的緣故(如圖)。一般認為大王魷魚雄性個體的成熟體長約為1公尺,因此這個標本刷新最小成熟體長的紀錄。雖然與全長達13公尺的世界記錄相比,臺灣的首次記錄顯得相當嬌小,但因為各項形質特徵皆很完整,提供不少關於大王魷魚生物學的重要發現。

大王魷魚出現在臺灣周圍海域其實是可預見的,過去幾年跨國的研究團隊即在日本海域發現多隻大王魷魚的紀錄,甚至拍攝到活體大王魷魚的影像,而與日本地理位置相近且同樣具有廣大大洋區的臺灣東部與南部海域也曾經有出現大王魷魚的傳聞,只是沒有留下實體的標本或影像紀錄。至於大王魷魚出現代表的生態意義為何,仍需進一步研究,因此希望未來漁民若有發現類似的個體,能立即通報相關單位,一同協助揭開大王魷魚的神秘面紗。

研究團隊已完成形質測量與攝影紀錄,將進行遺傳分析以確認這隻標本與已知世界廣泛分布的大王魷魚之關係,並由海洋大學漁科系王佳惠教授團隊進行平衡石分析以確定年齡。標本目前於國立自然科學博物館固定保存,未來將成為國內外相關研究的重要材料,也希望能在博物館中向大眾展示、介紹這個迷人的大洋生物。

資料來源:中興大學新聞稿(2015/01/13)

The post 中興大學解剖臺灣首次發現大王魷魚 appeared first on PanSci 泛科學.

百年戰爭:葡萄酒與根瘤蚜蟲的歷史

$
0
0

King_Henry_V_at_the_Battle_of_Agincourt,_1415

說到百年戰爭,通常想到的應該是英法之間因為王位而發生的諸多爭端,其中又牽扯了當時經濟文化均處於優勢,現在則是知名酒區的勃艮地公國。既然是長達百年的戰爭,可歌可泣的故事當然不少,像聖女貞德就出生於這個時代。但我想討論的,其實是另一種長期抗戰,葡萄與昆蟲間直到今天還在持續的演化戰爭,而戰爭的代價,則影響到了人類重要的作物之一──葡萄。

史上最強饕客,造成歐洲19世紀的經濟浩劫。當時法國70%的葡萄因為根瘤蚜蟲而死亡,成千上萬賴以維生的釀酒家族經濟因此崩潰。 Credit: Great French Wine Blight

史上最強饕客,造成歐洲19世紀的經濟浩劫。當時法國70%的葡萄因為根瘤蚜蟲而死亡,成千上萬賴以維生的釀酒家族經濟因此崩潰。
Credit: Great French Wine Blight

入侵者檔案: 葡萄根瘤蚜

前面所提到的昆蟲,就是葡萄根瘤蚜蟲(Daktulosphaira vitifoliae)。葡萄根瘤蚜蟲原產於北美,寄生於葡萄屬 (Vitis) 的植物,它的生活史相當複雜。

葉癭型感染來說,當被產在葡萄葉背上的雌、雄卵 (male egg and female eggs) 孵化後 (此階段其口器發育不全且缺乏消化系統) 的雄蟲與雌蟲 (有性蚜的若蟲階段是在卵內完成的,孵化後直接是成蟲) 不會進食,兩者交配後雌蟲會在葡萄藤的樹皮內產下一顆越冬卵 (overwintering egg) 隨即死亡 (標準的牡丹花下死,做鬼也風流)。

當春天來臨,越冬卵會發育成若蟲 (nymph),若蟲會發育成幹母 (fundatrix, stem mother),並爬上葡萄嫩葉,將唾液注入葉肉組織造成葉癭,並在癭中行孤雌生殖產卵,繁殖好幾個世代。這個階段的若蟲蛻皮 4 次,第一階段的若蟲又叫爬行者 (crawler)。爬行者有較好的活動能力,可能會繼續感染其他葉子,或是遷移到根部展開另一種類型 (根瘤型) 的傳染。

根瘤型的感染中,爬行者向下爬到根部,鑽孔並進入根部尋找養分。這型的感染會在葡萄的生長季藉由孤雌生殖持續5-7個世代,並經過土壤縫隙向其他未受感染的根傳播。

進入秋季後的最後一代若蟲會在根部冬眠,直到春季再重新開始活動。但是根瘤型傳染循環在某些情況下會受到刺激,某些個體發育成有翅型成蟲 (alate),會離開植株至在新植株葉片上並以孤雌生殖方式產下雌雄卵 (小顆的卵為雄卵,大顆的為雌卵),重新進入上述的葉癭型有性世代。

葡萄根瘤蚜蟲的生活史。 Credit: Biology and Management of Grape Phylloxera

葡萄根瘤蚜蟲的生活史。 Credit: Biology and Management of Grape Phylloxera

有趣的是,葡萄根瘤蚜蟲的生活史會因為寄主的不同而有所改變,當寄主是北美的原生葡萄時,葉癭型與根瘤型的傳染都會發生,可是如果宿主變成歐洲葡萄 (Vitis. vinifera, 就是釀酒葡萄),就幾乎沒有葉癭型傳染。所以對葡萄酒產業來說,根瘤蚜蟲最大的問題是對歐洲葡萄根部的危害。當爬行者在鑽孔的同時,也會分泌物質,使組織增生 (產生所謂的根瘤),也讓葡萄的傷口無法癒合,直到最後根瘤蚜與其他後續的病蟲害感染殺死植株。在 19 世紀的歐洲,葡萄根瘤蚜的爆發,幾乎毀掉了所有的釀酒葡萄。19 世紀晚期,全歐洲的酒莊不顧一切,甚至不惜燒毀世代傳承的古老葡萄園,以阻止這場葡萄瘟疫的蔓延。然而,葡萄根瘤蚜蟲還是傳到了幾乎全歐洲:以法國為例,超過 70% 的法國葡萄藤死於根瘤蚜蟲,估計歐洲當時 2/3 – 9/10 的葡萄園因此被毀。

兩兵相接:葡萄根瘤蚜的奇幻漂流

可是原產於北美東部的根瘤蚜蟲怎麼會跑到歐洲去開大絕,摧毀歐洲的葡萄園呢? (老實講,當時歐洲人也把天花等疾病帶到美洲……算是某種程度的非法正義) 先講結論,這是外來種防治重要性的最佳例子。

關於葡萄根瘤蚜進入的歐洲的原因,有幾個可能的說法,其中一個是當時英國的園藝學者將北美的葡萄屬植物做為珍貴的植物標本運送至英國;另一個可能性是農學家把北美的葡萄屬植物引進法國,作為病蟲害防治的材料。在沒有保育生物學概念的當時,當然沒有人會想到檢疫的問題,完全引狼入室 (那保育生物學概念發達的今天還瘋狂引入外來種的台灣是…….? 詳見【政府帶頭破壞生態系列】管它吃魚吃肉放流外來種就是不對一位自然科教師的沉痛抗議)。不過也同時要考量到時代背景,由於19世紀蒸汽船的發明而加快的交通速度,也增加了根瘤蚜蟲被帶到非原生地的可能性。進入歐洲之後,葡萄根瘤蚜又再跟著殖民者的腳步,進入了南非、紐西蘭、澳洲等殖民地。

生物不學好,長大護家萌…….可能生物資源通通都被破壞光了 Credit: 公視

生物不學好,長大護家萌…….可能生物資源通通都被破壞光了。Credit: 公視

從葡萄根瘤蚜的生活史可以知道,儘管根瘤型根瘤蚜繁殖的機制會造成樹勢逐漸虛弱,但不會立刻出現病徵。由於歐洲葡萄從來沒有遭遇過類似的蟲害,所以當根瘤蚜進入歐洲後數年,從 1863 年起,南法酒農漸漸發現,自己的葡萄一棵棵變得衰弱,產量大減,然後死亡,並像瘟疫一樣的向外傳播。在絕望之下,各種神奇方法出現了 (電台賣藥),有的酒莊對著葡萄園唱誦《聖經》 (驅魔路線),抓狂的法國農人曾試圖在每株葡萄藤下都放一隻蟾蜍,想用「以毒攻毒」的辦法來驅逐瘟疫。沒有最荒謬,只有更荒謬,薄酒萊地區的人們甚至曾把男學生從學校上抓到田裡,要求他們一天至少兩次對著葡萄藤……尿尿。

鷸蚌相爭,漁翁得利:西班牙釀酒業的興起

順道一提,由於西班牙各產區之間的距離較遠,可能也因為西班牙某些葡萄品種跟地區天生能抵抗葡萄根瘤蚜,所以當鄰國法國遭受根瘤蚜浩劫期間,許多法國酒商跨越庇里牛斯山,來到離波爾多最近的西班牙里奧哈(Rioja)和那瓦勒(Navarra)產區大批量購買葡萄酒,以補充法國當時葡萄酒生產的不足。因此,雖然西班牙也是根瘤蚜的疫區之一,但卻成為法國這次不幸最大的受益者:他們順理成章的吸收了法國當時先進的釀酒文化和工藝,進而帶動了整個西班牙葡萄酒產業的興起。直到今天,每年 9 月 7 – 8 日被訂為葡萄根瘤蚜節(Festa della Filoxera),在馬德里跟加泰隆尼亞等地都會有狂歡活動,參加者會 cosplay 成葡萄根瘤蚜的樣子,在街上放煙火,慶祝葡萄根瘤蚜對法國葡萄酒工業的破壞(敵人的敵人就是朋友?)

我其實無法理解扮成蟲走在街上狂歡的興奮感…… Credit: Robin Allaby

我其實無法理解扮成蟲走在街上狂歡的興奮感……
Credit: Robin Allaby

最新戰爭武器;嫁接的使用

回到根瘤蚜的防治,從 1860 年代疫情爆發之後,根瘤蚜的正規基礎研究也不斷的進行。在 1868 年,深受根瘤蚜蟲害所苦的農人前往位於蒙佩利爾的農業工程師學校 (Montpellier SupAgro) 求救。Montpellier 的研究者很快發現所謂的「瘟疫」其實是寄生在根部的蚜蟲所造成的。1869 年,英國的昆蟲學家發現,這種蚜蟲,其實與英國自 1863 年起受到的葡萄葉蟲害的致病昆蟲一致。也在同一年,科學家們發現這種昆蟲早在 1855 年時美國研究者已經描述過其生態行為,也因此得知葡萄根瘤蚜蟲是個原裝進口的美國貨。

一開始,科學家的試圖解決疫情的方法是雜交。從種子銀行含藏著解決未來糧食問題的關鍵可以得知,藉由不同品系,甚至不同種間的雜交,人們可以試圖結合兩邊親本的優秀性狀。然而培育出來的結果發現,釀出來的酒有一個強烈的風味! 而且法國當地的研究者對雜交葡萄出來的酒的品質也有所疑慮,所以這個方法當然沒有被廣泛採用。

然後,燈燈燈燈~ 嫁接就登場了!在  1872 年,法國人 Jules Emile Planchon 和美國人 Charles Valentine Riley 等人組成的研究小組,建立了針對葡萄根瘤蚜的嫁接管理。通過將歐洲葡萄接穗嫁接到美國本土葡萄品種的砧木上,來抵禦根瘤蚜的對歐洲葡萄根部的危害。在演化生物學的觀點中,時間是個非常重要的因素,在原生地,由於葡萄根瘤蚜與原生葡萄屬植物長期接觸,根瘤蚜寄生的葡萄個體如果產生嚴重的病害,留下後代的機會相對較小,所以幾代之後,能對抗根瘤蚜的個體就會逐漸被篩選出來,而產生美國本土葡萄對葡萄根瘤蚜的抗性。

天擇作用的機制 Credit: Evolution

天擇作用的機制。Credit: Evolution

由於長期演化出來的抗性,根瘤蚜蟲對北美原生葡萄的生長影響不大。波爾多葡萄栽培家 Leo Laliman 將這個方法在波爾多推廣,才總算抑制住了根瘤蚜不斷蔓延的趨勢。但是細心的讀者可以發現,這個方法是治標不治本,因為宿主還在,所以根瘤蚜從來沒有在歐洲被移除,頂多只能說經由嫁接,讓歐洲葡萄有相對健康的根系吸收水分和無機鹽,維持生長而已。

嫁接為植物在園藝中所使用的其中一種繁殖方法,把植物體的一部分(接穗)固定在另外一個植物體(砧木)上,使其組織相互運送水分養分。 Credit: Graft

嫁接為植物在園藝中所使用的其中一種繁殖方法,把植物體的一部分(接穗)固定在另外一個植物體(砧木)上,使其組織相互運送水分養分。Credit: Graft

道高一尺,魔高一丈: Biotype B 出現

把嫁接技術運用在葡萄根瘤蚜管理之後,第一階段暫時結束。看來歐洲葡萄在外籍美國傭兵,跟人類的外部支援之下,稍微占了上風。但是,葡萄根瘤蚜也沒有被殲滅,隨時有死灰復燃的機會。之前提過,隨著葡萄酒產區的拓展,歐陸之外的其他地區也用同樣的方法抑制了葡萄根瘤蚜的疫情。但到了 19 世紀初期,歐陸使用的砧木品系之一──AXR#1 開始無法抵抗葡萄根瘤蚜侵襲,同樣的現象也發現在西班牙、南非、與加州。這次根瘤蚜的再出現對加州的影響最大,因為當時加州兩個最有名的葡萄酒產區,那帕 (Napa) 和索諾瑪 (Sonoma) 大約有 75% 的葡萄都接在 AXR#1 上面,最後當地的栽培者大約花了 60 億美元重新嫁接新的砧木。

加州在1938年時曾做過田間試驗,確認 AXR#1 能成功抵抗葡萄根瘤蚜,才開始大量作為砧木使用,怎麼在只過了不到50年的1983,葡萄的死亡事件又在加州發生了呢?

研究者觀察了加州的砧木品系後,指出這種寄生在 AXR#1 上的葡萄根瘤蚜,現在被稱為 biotype B,有與原來的葡萄根瘤蚜,現在叫 biotype A,有不同的生態特性。Biotype B 其實也在其他砧木上出現,但是只對 AXR#1 產生傷害。如果比較 AXR#1 跟其他砧木的種源,會發現 AXR#1 的親本有歐洲葡萄的成分。科學家們研究後發現,當葡萄根瘤蚜對北美原生葡萄的適應性增加 (也就是就算寄生在北美原生葡萄上,對植株造成的傷害也不那麼大),對歐洲葡萄的適應性就會降低。隨著美洲葡萄砧木品系在人類產業的需求下大肆擴張,葡萄根瘤蚜對美洲葡萄的適應性也逐漸提高了,很可能讓原本帶有歐洲葡萄的成分的砧木品系 (像是 AXR#1) 受到波及,無法跟上葡萄根瘤蚜與北美原生葡萄的生存競爭而被逐漸淘汰。

這個歐洲葡萄、北美葡萄面對根瘤蚜性狀之間的演化關係,可以被生物學家們用愛麗絲夢遊仙境中的故事情節來描述。簡單的說,生物之間存在許多的互動 (就是生物課本中說的競爭、掠食、共生等關係)。當某一生物產生突變,增加了適應性的同時,並定會影響其他競爭者相對的適應性。而這些物種為了維持競爭的態勢,也必須產生相應的改變,不然就會遭到淘汰的命運。在這樣的演化過程中,雖然彼此的相對適應性並沒有增加,但是大家都改變了;但如果有某方不變,就很可能遭到淘汰 (詳細的理論概念請看我的偶像之一,台大王弘毅老師的介紹 紅皇后:愛麗絲在鏡中奇緣裏學到的生存競爭法則,與紅皇后與有性生殖)。

你以為你沒在動,其實你在跟著別人向前跑。如果你真的沒在動,或是動得不夠快,你就要被淘汰了! Credit: Alice & Red Queen

你以為你沒在動,其實你在跟著別人向前跑。如果你真的沒在動,或是動得不夠快,你就要被淘汰了!
Credit: Alice & Red Queen 

除了嫁接之外的方法,各方專家也持續在開發各種不同的方法來防治葡萄根瘤蚜。其中唯一執行之後 100% 有效的方法是「隔離」,也就是不要讓可能帶有葡萄根瘤蚜的植物跟所有的設備、器材、甚至工作人員的服裝接觸植株……其實完全是預防重於治療的概念,因為真正能殺死的根瘤蚜的農藥太毒,而一般的藥劑或處理方法也無法完全殺死根瘤蚜。畢竟雖然用嫁接抑制,但葡萄根瘤蚜從來都沒有消失啊! 有些葡萄酒的生產國執行「鎖國政策」,除非事前申請並消毒,所有植物一律不許進入國內。這個國家就是智利,智利由於安地斯山脈和太平洋的包圍,再加上嚴格的檢疫系統,也使其至今沒有遭受根瘤蚜的為害。

結語

這場長達百年的演化對抗至今還在持續,雖然有時會有某方相對站上風,但從來沒有真正的勝利者或失敗者出現 (畢竟兩個物種現在都還存在)。有道是「不怕神一般的敵人,只怕豬一般的隊友」,人類在這場戰爭中完全就是豬一般的隊友。看完整個過程,可以發現根本就是人類引起了這場戰爭,在過去這一百多年,人類在雙方之間穿針引線的情節所在多有,從外來種的引進、防除方法的建立……人類的角色為了自己的經濟利益,有時在幫葡萄根瘤蚜,有時則努力維持歐洲葡萄的生存 (但卻又被砧木的抗性演化倒打一記回馬槍)。到底是情愛的糾葛?命運的糾纏?金錢的誘惑?還是利益的衝突? 這一切命運的糾葛又將會產生何種結果,就讓我們繼續看下去 (菸)~

  • 致謝:感謝Emily Yo (釀酒師之路版主)、老友陳陽發、跟新友張妤貞對專業內容與文章結構上的修改。

參考資料:

  1. Granett, J., et al. (2001). Biology and management of grape phylloxera. Annual review of entomology, 46: p. 387-412.
  2. Downie, D.A. (2002). Locating the sources of an invasive pest, grape phylloxera, using a mitochondrial DNA gene genealogy. Molecular Ecology, 11: p. 2013-2026.
  3. Phylloxera
  4. Great French Wine Blight
  5. Phylloxera: the parasite that changed wine forever
  6. 歷史丨葡萄根瘤蚜的“饋贈”

The post 百年戰爭:葡萄酒與根瘤蚜蟲的歷史 appeared first on PanSci 泛科學.

寒武紀大爆發為何發生?是因為氧、掠食者亦或是地磁反轉無情的捉弄?

$
0
0

由化石記錄可知,如今千奇百怪的動物,大多數祖先最早都可以追溯到寒武紀(Cambrian),這個距今約4.8到5.4億年前的地質時期。比起已經出現30億年以上的生命,5億年很短,但相較只有20萬年歷史的智人,5億年又長的無法想像。

寒武紀大爆發想像圖

寒武紀大爆發想像圖,這是個多彩多姿的生命新世代。(取自這裡

海洋、大地、生命,跟現在截然不同的遠古年代

許多人知道寒武紀,是因為「寒武紀大爆發(Cambrian Explosion)」,也就是寒武紀時冒出來,大批前所未見的奇形怪狀動物。事實上,欣欣向榮的新生命不只眷顧寒武紀,開始於6.35億年前,更早前的埃迪卡拉紀(Ediacaran)也出現過許多新種動物,只是這批動物絕大部分都滅絕了,被寒武紀繼之而起的新世代所取代。

為什麼?為什麼生命在30幾億年前就已經誕生,卻要經過20多億年,等到埃迪卡拉紀才出現構造比較複雜的動物?為什麼?為什麼埃迪卡拉紀的動物又一夕間大量消失,相對迅速地被後輩取代?為什麼?為什麼寒武紀的動物與之前如此不同?

這些問題至今都沒有確定的答案,畢竟我們對那個悠遠古老,大地與海洋都跟現代截然不同的年代,所知相當有限,目前大致只能確定,那時的動物都是水生,尚未登陸。埃迪卡拉紀的動物相對簡單,沒有眼睛、肢體等構造,宅在海床上不會動;寒武紀的動物比較複雜,出現眼睛、長腳、硬殼、還會游泳。

過去一派看法認為,寒武紀大爆發的關鍵在演化上的創新,例如視覺;另一派則主張生命複雜度與氧濃度息息相關,等到寒武紀時,氧濃度才上升到足以支撐複雜動物,因此寒武紀大爆發是氧濃度增加的結果[1]。最近研究卻發現,埃迪卡拉紀跟寒武紀交界時期的氧濃度,其實沒什麼差異,無法直接用氧濃度增加,解釋生命形態的轉變[2]。

圖上半部分是歷史上海洋中氧的濃度。長期趨勢看來,濃度幾億年來一直都很低,但在某些時候會突然上升一下,然後又降回去。埃迪卡拉紀末期的劇烈上升,可能與埃迪卡拉紀大滅絕,以及寒武紀大爆發有關。圖下半部分是兩個時期的生物形態。埃迪卡拉紀動物普遍比較大隻,但構造簡單,很宅不會跑;寒武紀動物演化出更複雜的眼睛、附肢、各式身體組織,會跑來跑去,這些特徵一路流傳到今天。(取自ref1)

插播一個有趣的相關問題:最早的動物何時誕生?已知最古早的動物化石距今5.8億年,然而分子演化估計的年代卻是7到8億年前,也許線索就藏在氧濃度中。8億年前的氧濃度是現在的2到3%,應該已足以讓最初構造極簡的動物誕生,但要等到埃迪卡拉紀時,氧濃度才高到足以出現更複雜的動物,形成化石保存下來。

掠食刺激寒武紀大爆發?

回到寒武紀大爆發,有人認為掠食者才是關鍵。稍早研究認為,氧濃度低於0.5%只能支撐極簡單的生態系,動物只有微生物能吃;略升為0.5到3%,動物種類會變多,但還是只能吃微生物;然而氧濃度升為3到10%後,以別的動物為食的動物,也就是掠食者就能出現,更加複雜的食物網於是誕生[3]。

埃迪卡拉紀的典型動物,身體柔嫩,欠缺防禦,又不會跑,簡直是生來給掠食者享用的大餐,競爭失敗的軟弱動物最終被淘汰,發展出有效防禦措施的動物則隨之興起,掠食者刺激了生物多樣性誕生,造成寒武紀大爆發。

抵擋掠食者的方法之一,是靠硬殼保護肉體。埃迪卡拉紀末期時至少出現3種動物,配備礦物化的身體構造,其中一種叫作Cloudina,科學家在它的鈣質外殼上觀察到洞,可能是曾被掠食者攻擊的痕跡[4]。耗費能量的外骨骼不可能無緣無故誕生,有學者認為為了抵擋掠食者演化出殼,是最合理的解釋。

F3

有殼的Cloudina想像圖。(取自wiki

除了變硬以外,還有別的辦法避免被吃掉,像是更靈敏的感官、行為改變。埃迪卡拉紀的動物住在海床的微生物層(microbial mat)上,算是活在二維的平面世界,但一旦動物能挖穿微生物層,鑽入海床躲避掠食者(氧也能跟著接觸到底下的沉積層),或是游泳離開海床,2D就升級為3D,從此成為多彩多姿的立體世界。

輻射造成寒武紀大爆發?

以上解釋寒武紀大爆發的說法看似合理,但最近有另一個假說提出[5]。新研究報告,5.5億年前,也就是埃迪卡拉紀末期,地球歷經比現在頻繁20倍的地磁反轉,這波劇烈的地磁變化,也許導致那時損失高達20到40%的臭氧層,讓穿透的紫外線輻射大增[6]。

F4

這麼多啊,死亡帶走了這麼多啊!埃迪卡拉紀的柔嫩動物們,是否因為受不了而大量輻射而滅絕?(取自ref5)

在狠毒的陽光下,沒有防禦、不會移動的軟弱動物將紛紛陣亡,能防禦輻射傷害的動物才能生存。用硬殼遮蔽肉體、長出眼睛偵測光線、從海床往下挖掘尋求庇護,都可能是動物演化而來抵抗輻射。這個假說聽來驚人,不過基本上跟前一個類似,只是把「掠食者」的角色換成「紫外線」。

驅使寒武紀大爆發的關鍵為何,目前仍沒有答案。氧濃度與掠食者的假說證據較多,看來有希望,但仍不足夠;紫外線假說則疑點重重,畢竟地磁反轉對輻射強度的影響,以及輻射對生物遺傳的影響,都還有許多未知之處,要證實這套論點,比前一個假說需要更多後續研究。

參考文獻:

  1. What sparked the Cambrian explosion?
  2. Sperling, E. A., Wolock, C. J., Morgan, A. S., Gill, B. C., Kunzmann, M., Halverson, G. P., … & Johnston, D. T. (2015). Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 523(7561), 451-454.
  3. Sperling, E. A., Frieder, C. A., Raman, A. V., Girguis, P. R., Levin, L. A., & Knoll, A. H. (2013). Oxygen, ecology, and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences, 110(33), 13446-13451.
  4. Bengtson, S., & Zhao, Y. (1992). Predatorial borings in late Precambrian mineralized exoskeletons. Science(Washington), 257(5068), 367-369.
  5. Hyperactive magnetic field may have led to one of Earth’s major extinctions
  6. Meert, J. G., Levashova, N. M., Bazhenov, M. L., & Landing, E. (2016). Rapid changes of magnetic Field polarity in the late Ediacaran: Linking the Cambrian evolutionary radiation and increased UV-B radiation. Gondwana Research.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

The post 寒武紀大爆發為何發生?是因為氧、掠食者亦或是地磁反轉無情的捉弄? appeared first on PanSci 泛科學.


從古至今最關鍵的五餐飯──《品嘗的科學》

$
0
0

最早出現的和味道有關的跡證,早在地球生命開始感覺到周遭世界的時候就有了。海水裡從這些生物體旁邊漂過的養分,其味道就激發了牠們原始的神經系統。在接下來的數十億年裡,生命演化的過程中,已經吃過無數餐飯了。

我們現在的口味,就像俄羅斯套娃那樣,一層層包覆著以前的那些體驗。不論一個人的口味是怎麼培養起來的,或是一道菜裡的成分有多麼不易察覺,一個味道就能勾起久遠記憶中的原始衝動,這些原始衝動呼應著演化過程的轉折,與遠古時候為食物爭得你死我活的爭鬥。

底下介紹的從古至今最重要的「五餐飯」,每一餐都是在演化史的重要轉折點發生,它們對於要解釋味覺從哪裡出現,以及智人的烹飪發明天賦從何處產生,大有幫助。

地球生命的第一口飯

這種小動物有些像金龜子,大約一吋長,有格紋狀的柔軟甲殼,會在海岸淺灘的沙子裡竄來竄去。接著牠能察覺到由氣味、振動與光線變化交織而成的破舊織毯。牠那蟲狀的獵物會往沙裡挖洞,企圖迴避閃躲到安全地點。不過為時已晚。掠食者用鉗狀的下顎把獵物扯開,吸進嘴裡、吞進食道,然後繼續牠的行程,尋找藏身處躲藏,讓食物消化。

四億八千萬年前的這一餐,證據是在一九八二年發現的。那一年,還是研究生的馬克‧麥克孟納明(Mark McMenamin)為墨西哥政府調查索諾蘭沙漠(Sonoran Desert)的地質,在墨西哥索諾拉州圖桑市(Tucson)西南方約七十英里處的高山 Cerro Rajón(中譯:朗山) 的山側進行挖掘(古代的海底現在變成在山頂上了)。他在一片灰綠色頁岩上注意到一個很微小的化石壓痕,當時他也沒有多想,就把那個壓痕從岩石上鑿下來,把它和其他那堆標本一起裝袋。

由未經訓練的人來看的話,那個化石只不過是大約四分之一吋長、隱隱約約的連續刮痕。當麥克孟納明把它拿回實驗室研究時,他辨認出那是三葉蟲的運動,刻畫在硬化泥漿上的爬痕。在動物界裡,三葉蟲幾乎要算是每種動物的老祖宗了:魚類、雙翅目、鳥類、人類。牠們在海床上留下無數化石,讓它們成了這種天然的歷史博物館裡的固定班底。很多化石有多節式外殼,看起來像是鱟和蜈蚣雜交的產物。這種化石的紋路圖樣很有名,甚至還有一個學名「多線皺飾蟲」(Rusophycus multilineatus)。麥克孟納明保留了這個化石,也在自己的博士論文裡寫到它。一直到二十多年後他擔任曼荷蓮學院(Mount Holyoke College)地質學教授、研究早期的生命演化過程之前,他都很少想到這件事。

後來麥克孟納明在看到他以前忽略掉的東西時,再一次檢查了那個化石。「它具有這種額外的特徵,不只是三葉蟲而已,緊鄰的另一個彎彎曲曲的軌跡化石也有這特徵。」他說:「這些東西很罕見。」他推斷,這個化石包含了兩種生物相遇的證據。另外的那道軌跡,就是一隻像蟲子那樣比較小的生物想要鑽進泥巴裡的證明。從這些記號的排列來看,顯然三葉蟲就在牠的正上方。麥克孟納明採用了「奧卡姆剃刀」(Occam’s Razor)原理:最簡單的解釋,就是三葉蟲要挖洞找吃的東西。他寫道:這就是「第一口飯」的證據─是目前已知最古老的掠食者吞吃獵物的化石。

這一餐的味道如何?有可能想像出來嗎?

在那個時代(也就是寒武紀〔Cambrian Period〕)之前,就任何有意義的方面來看,味道是不存在的。地球上的生命大部分是由漂浮、過濾和光合作用組合而成。細菌、酵母和其他單細胞生物,藏身在花崗岩的溝紋裡或是砂粒之間。有些單細胞生物會湊在一起形成黏糊糊的細胞叢。管狀或碟狀的生物體會搭著洋流的順風車漂流。「吃」的意思是指吸收海水裡的營養成分。有時候某個生物體會包裹住另一個生物體。

接著,經過數千萬年──以地質學的時間尺度來說只是一瞬之間─海洋裡變成充滿各種新生物,包括三葉蟲,牠成了生命演化史上最成功的生物類別;牠們稱霸地球的時間持續超過兩億五千萬年。牠們大約是五億年前出現的,也就是我所知自然界真正開始的時間:有史以來第一次,生命開始有系統地吞吃掉其他生命。這些新生物和牠們的前身不一樣,牠們有嘴巴和消化道。牠們擁有較原始的大腦和感官,以偵測到明、暗、動作和洩漏形跡的化學特徵。牠們利用這種精巧的新工具來獵捕、殺掉獵物與填飽肚子。就像伍迪‧艾倫(Woody Allen)電影《愛與死》(Love and Death)裡的角色鮑里斯(Boris)說的:「對我來說,嗯……我也不知道,大自然是蜘蛛與蟲子,以及大魚吃小魚。還有植物吃掉植物,動物吃……它就像一座巨大無比的餐廳。」

三葉蟲並沒有存活到現在,從那些化石也沒有辦法知道牠們神經系統的資訊,所以想要知道牠們的感官能力,得仰賴經過訓練的推測。確實,牠們可能完全沒辦法察覺像黑巧克力、葡萄酒這類複雜的氣味。人類的味道,即使是討厭的味道,都充滿細微之處,而且和其他氣味、過去的事件與感情,我們學到的經驗整體,都息息相關。很可能三葉蟲不會有「愉快」這類的感覺,而且僅能保留一點點殘存記憶。每一餐嚐起來的味道必定都差不多。而這一餐的特點一定是大多來自化解了飢餓感,以及攻擊的衝動。

還有,這些原始的氣味元素是一種相當了不起的演化成就,而人類的味道同樣具有這種相同的基本生理學構造。當然,這好比是拿小鳥比雞腿似的。不過,味道的基礎已經奠定了。

Cambrian_sea

根據化石證據,寒武紀時期,物種出現爆炸性的成長。本圖為藝術家模擬寒武紀時期的海底樣貌。credit:Ghedoghedo

地球生活條件的某些重大改變,引發了這場掠食者與獵物間的重大變革,也就是「寒武紀大爆發」(Cambrian explosion)。科學家們對於它是什麼狀況並沒有共識。有一些科學家認為那是一場史前時代的全球暖化,融解了長期冰凍的兩極冰帽所造成的。海面上升達數百英呎,海水淹進內陸,淹過長了青苔與真菌的低矮山丘和岩石(樹、草和開花植物在當時都還沒出現),侵蝕出潟湖並塑造出沙洲與淺灘,創造出相當適合生命體生長繁殖的溫暖淺窪地。有些科學家描述這次大爆發是地球磁場方向改變,更有其他人指稱是突變的關係,這種突變會導致動作電位(action potential)出現,也就是讓神經細胞能遠距離溝通的能力,或是在 DNA 編碼上的其他偶然變化。

不管事件的精確順序是怎樣,在敏銳的感官與演化成功之間,已經建立起一個相當牢靠的連結。就在身體與神經系統適應了日益升高的威脅與機會之後,一場生物學上的武器競賽展開了。那些感官,一度只是「偵測與反應」的機制,為了引導出複雜的行為,必須發展得更有效果才行。

氣味成了這個過程的關鍵。從三葉蟲存在的時代到現在,覓食、獵捕和吃食物這些行為,推動了生命不斷地啟動,在我們人類的大腦與文化成就上登上顛峰。氣味更勝於視覺或聽覺或甚至是性,是人類的核心裡最重要的要素。它創造了我們。麥克孟納明說,最為諷刺的,就是世界上開始出現殺戮,並伴隨著難以言喻的痛苦,也發展出智能和知覺,最後產生了人類的意識。


 

The post 從古至今最關鍵的五餐飯──《品嘗的科學》 appeared first on PanSci 泛科學.

10 種一直在你身邊的昆蟲室友,你認得嗎?(蟑螂、蚊子、蒼蠅除外)

$
0
0

文、圖/李鍾旻

我說,今天要介紹住家「昆蟲室友」,現在,你腦海裡正閃動著什麼樣的想法?是覺得好奇、覺得有趣,或者盡是負面的聯想,認為牠們很髒、一想到就背脊發涼?

好吧,不管你對昆蟲是喜歡還是恐懼,有件事你非認清不可:其實,你一直都跟昆蟲們住在一起。

我們所住的屋子,不管是公寓、別墅或大廈,除了蟑螂、蚊子、蒼蠅等這些廣為人知的「衛生害蟲」,還存在著許多你可能從未留意過的昆蟲室友,這是千真萬確的。

這邊列舉出10大類在住家中出現率極高的昆蟲,待你看過以下說明後,再回想一下——牠們,是不是讓你覺得似曾相似?

(一)書本裡的小點

曾經在翻開書本時,特別是當翻開那泛黃的舊書,見到裡頭有細小、沒有翅膀的蟲子在移動嗎?那麼,你可能是見到了「書蝨」。

書蝨的外觀略呈扁平,後足的腿節特別粗,主要以黴菌和植物性碎屑為食,在野外環境中的數量很多,但也常在居家環境出現。生活在住家裡的書蝨,往往會藏匿在累積塵埃的角落、發霉的家具、書櫃及舊紙堆中。

幾乎家家戶戶都會有書蝨,不過牠們的體型很小,不太容易讓人給發現。

書蝨(Liposcelis sp.),牠的體長只有約1~1.3公釐。書蝨在分類上屬於「嚙蝨目」(此目由過去的「嚙蟲目」與「食毛目」、「蝨目」所合併),書蝨屬。

書蝨(Liposcelis sp.),牠的體長只有約1~1.3公釐。書蝨在分類上屬於「嚙蝨目」(此目由過去的「嚙蟲目」與「食毛目」、「蝨目」所合併),書蝨屬。

(二)喜歡潮濕的蟲子

在溫暖潮濕的地方較容易見到,牠們叫作擬竊嚙蟲,外表具有翅膀、細長的絲狀觸角,能夠行走、跳躍,但不擅飛行。通常在牆壁上活動,往往集體出現,但數量不多,專以牆上長出的微小黴菌為食,所以多半會出現在長有真菌的角落,有時也能在浴室發現牠們。

擬竊嚙蟲和書蝨在分類上屬於同一目的成員,但住宅中的擬竊嚙蟲通常不如書蝨那麼常見。

擬竊嚙蟲(Psocathropos sp.),體長約1~2公釐,分類上屬於嚙蝨目,擬竊嚙蟲屬。

擬竊嚙蟲(Psocathropos sp.),體長約1~2公釐,分類上屬於嚙蝨目,擬竊嚙蟲屬。

(三)看,牆壁上有什麼?

我猜你或你的家人一定見過牠。屋子的牆角或家具縫隙,那些灰色紡錘狀,貌似水泥塊的神秘物體,其實是「衣蛾」的幼蟲,以及牠們所造的筒巢。筒巢就是那水泥塊般的構造,是由幼蟲吐絲製造,並黏附了沙粒而組成,幼蟲則躲在裡頭。

衣蛾幼蟲長期躲在筒巢內,行動緩慢,喜陰暗環境,一般以毛髮、蜘蛛絲等為食,所以我們如果一陣子沒有清掃室內,會在牆角的頭髮堆裡找到牠們。另外,已知國外有些種類的衣蛾會取食真皮或絲織品製的服飾,但台灣所產的種類則沒有對衣物造成危害的相關記錄。

衣蛾(Phereoeca uterella)的幼蟲,衣櫥或書桌的夾層裡其實常有發現牠們的機會。一般我們所稱的「衣蛾」英文稱作Clothes moth,為蕈蛾科中數種居家環境常見蛾類的統稱。

衣蛾(Phereoeca uterella)的幼蟲,衣櫥或書桌的夾層裡其實常有發現牠們的機會。一般我們所稱的「衣蛾」英文稱作Clothes moth,為蕈蛾科中數種居家環境常見蛾類的統稱。

(四)不太衛生的「小愛心」

浴室、廁所牆壁上那種看裡來類似「顛倒愛心」造型的小蟲,這個我敢肯定,你一定親眼見過,因為牠們實在太常出現了。這類昆蟲叫作「蛾蚋」,或稱蛾蠅,廣泛分布於熱帶至溫帶地區,一般出沒於住宅或汙水處理廠這類環境。台灣居家常見的有兩種,分別是體型較大的白斑蛾蚋,以及體型比較小的星斑蛾蚋。

雖然長得像愛心,但牠們的幼蟲生活在汙濁的排水溝。成蟲常停棲在廁所牆面,有時也會飛到室內的牆壁上。

4

白斑蛾蚋(Telmatoscopus albipunctatus),或稱白斑大蛾蠅。蛾蚋在分類上屬於雙翅目蛾蚋科,蛾蚋亞科(Psychodinae)。

(五)米缸中的象鼻蟲

「米象」,又稱米象鼻蟲,牠就是一般我們說的「米蟲」啦!

米象是象鼻蟲的一員,頭部鼻子似的細長構造其實是特化的口器。在人類社會中,米象是白米、糙米的主要害蟲,米象成蟲會在這些穀物的果實上產卵,孵化後的幼蟲便會以之為食,在穀粒中生活、化蛹。牠們也會危害玉米、高粱、小麥等穀物。

早期的農家會在家門前曝曬剛收成的稻穀,在那些曝曬中的稻穀裡,就常常可以看到米象的成蟲在其間爬行。

米象(Sitophilus oryzae),體長約2.5~3.5公釐,為世界性分布,象鼻蟲科的物種。

米象(Sitophilus oryzae),體長約2.5~3.5公釐,為世界性分布,象鼻蟲科的物種。

(六)舊報紙裡有一大堆

你對衣魚應該不至於太過陌生吧?這類昆蟲外觀大多呈銀白色或灰色,平時置身在房屋縫隙或家具間。棲息在室內的衣魚,嗜食澱粉類的植物性材質。如其名,會取食衣服以及各類紡織品,另外也會吃食紙類,所以在舊報紙堆裡很常發現牠們。

平時家裡的衣物、書本都可能受衣魚啃食而破損。若擺放多時的紙張,邊緣出現了不規則的缺口、孔洞,即有可能是衣魚所造成的。

報紙堆中發現的毛衣魚(Thermobia domestica),一種常見的衣魚。俗稱的「衣魚」,在分類上指的是纓尾目的昆蟲,體型只有約1~3公分長。

報紙堆中發現的毛衣魚(Thermobia domestica),一種常見的衣魚。俗稱的「衣魚」,在分類上指的是纓尾目的昆蟲,體型只有約1~3公分長。

(七)誰的幼兒住在花瓶裡?

大家都看過蚊子,可是,蚊子的幼生期,一般人可能未必熟悉。蚊子的幼蟲、蛹都是在水中度過,什麼地方最容易發現牠們?室內的花瓶、冰箱底下的水盤,或者放很久的積水容器,都有機會看到!

尤其是白線斑蚊、埃及斑蚊,牠們偏愛選擇在人工的積水容器內產卵,所以我們特別容易在室內外見到這兩種蚊子的幼蟲。不過,埃及斑蚊大多只分布在西南部地區,故又以分布全台灣平地與山區的白線斑蚊最常被我們發現。

這不是外星人,牠是白線斑蚊(Aedes albopictus)的蛹,室內外的積水容器裡都很常見。我們所稱的「蚊子」,一般指的是雙翅目蚊科底下的種類。

這不是外星人,牠是白線斑蚊(Aedes albopictus)的蛹,室內外的積水容器裡都很常見。我們所稱的「蚊子」,一般指的是雙翅目蚊科底下的種類。

(八)會偷吃餅乾的小甲蟲

紅褐色的小型甲蟲,外觀橢圓、善於飛行,主要取食乾燥的植物性食品。菸甲蟲有個明顯的特徵,牠的頭部幾乎與軀幹垂直。牠們並有裝死的習性,受驚時會立刻縮起頭與六隻腳裝死。

之所以名為菸甲蟲,原因是這種昆蟲以危害儲藏菸葉而聞名。菸甲蟲不僅能夠取食對多數昆蟲具有毒性的菸草,更是原料菸葉的重要害蟲,故俗稱「菸甲蟲」、「煙甲蟲」。

菸甲蟲(Lasioderma serricorne),體長約3~4公釐。

菸甲蟲(Lasioderma serricorne),體長約3~4公釐。

(九)蟑螂剋星來也

雖然大小類似蒼蠅,但牠們可是一種寄生性的蜂類:蜚蠊瘦蜂。假若在家裡發現了牠們,怕蟑螂的你,請善待牠們,因為蜚蠊瘦蜂是不折不扣的蟑螂殺手!這種蜂專門以蟑螂卵為寄生對象,因此能夠減少蟑螂的數量。牠們生著一對藍色具光澤的眼睛、纖細的「腰部」,扁扁的腹部總是隨時擺動著。覓食時,時而飛行,時而於地面爬行。

已知蜚蠊瘦蜂的寄主有澳洲蜚蠊、美洲蜚蠊、棕色蜚蠊、家屋斑蠊等。

蜚蠊瘦蜂(Evania appendigaster)。

蜚蠊瘦蜂(Evania appendigaster)。

(十)洗臉時,牠就在你旁邊跳著

有沒有在潮濕的地板上,或浴室的洗手台上見過體型超級小、會彈跳的小蟲?那很可能是見到了跳蟲。跳蟲又稱彈尾蟲,許多種類以真菌、有機碎屑、腐植質為食,在土壤中很常見,有時也出現在潮濕的室內。為什麼叫作跳蟲?因為牠們腹部具有彈跳構造,遭遇天敵時能夠以彈跳的方式逃開。

跳蟲曾被歸類在昆蟲綱中的彈尾目,不過,由於牠們有許多特徵與昆蟲不同,後來被提升為「彈尾綱」,不再屬於昆蟲類;但也有部分學者將之視為廣義的昆蟲。

一種出現在浴室裡的跳蟲。「跳蟲」泛指彈尾綱的動物。

一種出現在浴室裡的跳蟲。「跳蟲」泛指彈尾綱的動物。

以上這些昆蟲室友的精美相片,有沒有慢慢換起你的回憶?想起來了沒,你曾在房間的某個角落見過當中的幾種,然而卻對牠們的一切不太熟悉,對不對?

也許是因為,這些生活在房舍裡的昆蟲多半體型不大,且外表並不鮮艷動人,所以往往不太引人注目吧!

說了這麼多,該輪到你了,要不要試著到牆邊、廚房、臥室、櫥櫃裡找找看,算一算今天你家裡可以找到幾隻蟲?

 

封面書衣.indd

 

 

The post 10 種一直在你身邊的昆蟲室友,你認得嗎?(蟑螂、蚊子、蒼蠅除外) appeared first on PanSci 泛科學.

海鳥吃塑膠?日益嚴重的海洋塑膠危機——《科學月刊》

$
0
0

黃向文/國立臺灣海洋大學海洋事務與資源管理研究所教授兼所長,本刊副總編輯。

2015 年9 月,一篇海鳥誤食海洋垃圾的研究發表於《美國國家科學院院刊》(Proceeding of the National Academy of Sciences),許多媒體引述標題非常聳動,如「海水汙染嚴重,9 成海鳥曾吞過塑膠」、「2050 年99% 海鳥都會吃到塑膠」,真的嗎? 99% 海鳥都會吃到塑膠?這可是非常嚴重的環境問題。

因應人類對於塑膠的需求量,塑膠產量從1950 年代以來每11 年倍增,也因為塑膠難以分解,加上儲存、處置的不當,導致大量塑膠被棄置、流入海中、成為主要的海洋廢棄物。最近研究數字顯示,海中塑膠垃圾的數量以對數成長,其密度已達每平方公里58 萬片。這些海洋垃圾可能使海洋生物因為纏繞、吞食無法消化、或者內含有毒物質致死。迄今,已有600 種海洋生物體內發現海洋垃圾。於是,一群關心海鳥的科學家找出1962~2012 年間曾紀錄海鳥誤食垃圾的文獻,發現135 種海鳥中有80 種(59%)曾誤食海洋

垃圾;個體方面則平均有29%。配合186 種海鳥的分布、覓食策略、體積大小、抽樣方法,再結合全球海洋塑膠垃圾的分布,模擬預測海鳥誤食海洋垃圾的高風險區。進而推論倘在今天進行此研究,預估90%海鳥個體的體內會有垃圾,到2050 年則有99% 種類的海鳥會誤食海洋垃圾。結論也提到,誤食垃圾風險最高的是在紐澳鄰近海域、海鳥種類分布最多的區域,並非海洋垃圾密度最高的水域。

試想,如果你有機會在2050 年到海邊賞鳥,每看到100隻就會有99 隻胃內有海洋塑膠垃圾,那是多驚人的景象?先回頭比較原文與媒體報導,「99% 海鳥」與「99% 種類的海鳥」就有不同,「種類」與「數量」是截然不同的定義。這是中文媒體在翻譯外文新聞時,未仔細查證的結果。其次,倘從數據反向解讀,海鳥中有41%物種(或71%個體)沒有誤食塑膠垃圾,從這個數字來看是否會比較安心?

此類研究屬於後設分析(Meta-analysis),利用多篇前人研究,將各文章之統計資料經過標準化等各種統計過程,得到整合性結果,提供世人對該議題的全面性了解。不過,我們可以從相關資料來源與方法,思考幾項此類環境議題研究的可能誤差:

Q1. 抽樣種類偏差?

從「種類」來說,全世界海鳥多達350 種,生態習性各有不同,對於掠食表層食物的鳥類,誤食垃圾的情況較嚴重;而覓食深層食物的海鳥,誤食垃圾比例較低。但該研究蒐集到的鳥種資訊未達半數,如何僅能依據半數海鳥的分布與誤食趨勢,就誇言另外半數的海鳥在未來30 年內也都將誤食海洋垃圾?

Q2. 抽樣地點誤差?

有關分布水域,結論認為海鳥誤食海洋垃圾的熱點在紐澳外海等南半球水域,然而,此觀點也顯示其可能為抽樣地點的誤差,因為紐澳水域海鳥種類眾多,相關研究也多。然而,該文章沒有交代相關論文的涵蓋水域或是各區域內的研究數量。因此,目前認為誤食比率較低的水域,其實可能是因為研究較少而造成,這部分仍尚待討論。另有科學家表示,在南極洋裡棲息有數量極高的海鳥(例如企鵝),但鮮少發現他們誤食塑膠垃圾,這部分可能歸功於南極條約的保護力,所以未若作者所言的嚴重。反之,在夏威夷群島研究信天翁的海鳥學者則認為夏威夷鄰近太平洋海域,才是海洋垃圾密度最高的地區,學者也見到越來越多住在中途島的信天翁幼鳥因為誤食海洋垃圾而亡,不認為熱帶水域相對比較安全。

Q3. 研究發表謬誤?

對於此類研究,都可能存在「研究發表誤差」,如果科學家蒐集到的海鳥胃內沒有誤食垃圾,則不具有發表效應,也不會有期刊接受此類「沒有保育價值」的文章。通常是情況越嚴重者,被接受的機率越高,長久以往,能夠見諸期刊的都是情況較危急的研究,因此,如果單純以研究報告分析,可能會造成高估。

這篇文章令人聯想到兩篇海洋保育界的文章,其一是在1990 年代,澳洲科學家發表一篇有關日本延繩釣漁船誤捕的海鳥數量,推估結果認為南太平洋每年因為延繩釣漁業而混獲的海鳥超過十萬隻,引起保育團體憂心忡忡,呼籲政府採取行動。為此,聯合國糧農組織召開多次專家諮商會議,並於1999 年通過乙份避免延繩釣漁業意外混獲海鳥之國際行動計畫,之後更因此成立「信天翁與海燕保育公約」,力推各項海鳥保育措施。但該研究僅利用一艘漁船在短短數個月期間、澳洲沿岸水域的混獲狀況。實際上,海鳥分布並非平均,漁船作業水域亦然。該文章忽略此現象,直接相乘結果造成此極大偏差,之後發表的文章也依據混獲變化情況下修數值。但不可諱言,因此引發的海鳥保育浪潮也的確發揮保育功效。

無獨有偶地,一群英美科學家在2006 年發表一篇文章,預估2048 年將無魚可吃,亦引起各方關注。即便受到一些海洋漁業學家的質疑,第一作者隨後也在2009 年發表文章表示此類過度漁撈的危機能夠被控制。不過,在2006年之後,因應該文章的論點而發起的許多海洋資源保育行動、生態標章等開始風行,相信對於資源保育仍有一定之成效。

所以,從研究方法觀點來看,該等論文或有可議之處,然而,不過才兩周之後,一篇類似的文章隨後於《全球變遷生物學》(Global Change Biology)期刊發表,該文以海洋垃圾與海龜分布區域的資料進行模擬,表示有52% 的海龜可能誤食海洋垃圾。開始有科學家評論這現象有如海洋版寂靜的春天,塑膠垃圾對於海洋的危害已經不下當年DDT 對於陸地環境的危害,我們應該採取積極的行動全面抵制、減少塑膠類垃圾的使用,這才是研究之後更深遠的呼籲吧!

The post 海鳥吃塑膠?日益嚴重的海洋塑膠危機——《科學月刊》 appeared first on PanSci 泛科學.

從吳郭魚到台灣鯛——科學史札記(三)

$
0
0

一九四六年,日本投降後第二年,許多被徵調到南洋的台灣兵集中在新加坡等待遣返。四月十九日,遣返的前一天,兩位年輕人越過養殖場的三層鐵絲網,脫下內衣當漁網,撈取了孵化約五天的「帝士魚」魚苗數百尾,放入帶來的空鳳梨罐中。這兩位年輕人就是吳郭魚的傳引人吳振輝和郭啟彰先生。

吳振輝與郭啟彰(左),民國四十年八月接受省主席嘉獎時留影,題「吳郭魚傳殖人」。

吳振輝與郭啟彰(左),民國四十年八月接受省主席嘉獎時留影,題「吳郭魚傳殖人」。

郭啟彰把這些魚苗裝入水桶,放在營門角落,以便次日攜返台灣,不料被同袍誤以為是髒水倒入水溝,在同伴的協助之下,好不容易才從水溝裡捉回20尾。從新加坡到基隆的十天航程中,郭啟彰以自己配給的生活用水為魚苗換水,細心照顧,回到旗津老家,只存活十三尾。這十三尾魚苗就是台灣吳郭魚的祖先。

郭啟彰(1912~2000),高雄市旗津人,生於高雄中洲魚民家庭,小學畢業後,進入高雄商業補習學校,二年畢業,任職中洲派出保甲事務所書記,第二年轉任中洲漁業組合書記,曾獲公費赴日本考察水產養殖。一九四三年,調往新加坡服役,軍方借重他的養殖經驗,分派他到養殖場養「帝士魚」。郭氏發現「帝士魚」的生態習性很適合台灣,就打定主意將這種原產東非的魚類魚引進家鄉。

吳振輝(1907~1979),屏東縣人,小學畢業後負笈東瀛,後入京都帝大農學院經濟部,畢業後任職東北滿州鐵路公司。戰時被派往蘇門答臘擔任調查員,一九四六年在新加坡等待遣返時結識郭啟彰,共同前往撈捕帝士魚苗,由郭氏帶回台灣。吳先生返台後曾任教台大,旋任職農復會及農林廳,六十五歲屆齡退休。

郭啟彰於一九四六年秋,把繁殖出的近百萬尾魚苗,分別放養於嘉南大圳、麻豆埤、嘉義紅毛埤、恒春龍泉潭等處,不久就分佈全台各地。這種源產東非的慈鯛科魚種,日本稱為「帝士魚」,剛引進時人們習稱「南洋鯽仔」。一九四八年,高雄縣縣長毛振寰先生為了感念郭啟彰在高雄縣大貝湖(澄清湖)放養成功,乃按兩人姓氏,將南洋鯽仔命名為「吳郭魚」;吳振輝年紀較長,故敘姓在前。一九四九年,台灣省政府農林廳正式發布將此魚命名為「吳郭魚」。

吳郭魚。圖/wikipedia

吳郭魚。圖/wikipedia@Destinationkho

經水產單位研究,發現吳郭魚適合水田放養。一九五一年起,農林廳開始推廣吳郭魚稻田養殖,除了收成魚獲,還可以減輕水稻的病蟲害、節省水田的肥料、減少除草的次數。一 甲稻田一年約可收穫一千台斤吳郭魚,對農民來說,是一項重要的額外收益。

然而,目前台灣養殖的吳郭魚,已非郭、吳二人引進台灣、養在水田裡的土種吳郭魚(Oreochromis mossambica)。一九六三年自非洲引進較為耐寒的「吉利種吳郭魚」(Tilapia zillii),後因肉質較差已遭淘汰。目前仍有養殖的「尼羅種吳郭魚」(Oreochromis nilotica),俗稱尼羅魚,係一九六六年由台灣水產試驗所(下稱水試所)鄧火土所長及海洋大學游祥平教授自日本引進。之後陸續引進多種吳郭魚,例如「歐利亞種吳郭魚」(Oreochromis aurea),於一九七四年由廖一久、曾文陽、黃丁郎等人自以色列引進;「賀諾魯種吳郭魚」(Oreochromis hornorum),於一九八一年由黃丁郎自哥斯大黎加引進;「黑邊吳郭魚」(Tilapia rendalli),於一九八一年由廖一久院士自南非引進。「紅色吳郭魚」(Oreochromis sp),俗稱紅尼羅魚,是一九六八年由水試所郭河所長選種雜交成功的。

一九六九年,郭河所長以莫三比克吳郭魚(Oreochromis mossambicus)雌魚與尼羅吳郭魚(Oreochromis niloticus niloticus)雄魚雜交,育成「福壽魚」,從此台灣吳郭魚養殖進入快速發展階段。一九七五年,水試所更以尼羅吳郭魚雌魚與歐利亞吳郭魚雄魚雜交育成單雄性吳郭魚,俗稱「單性吳郭魚」。吳郭魚的雄魚體型較大,單性魚不但體型大,且成長迅速,使養殖成本降低、利潤提高。此後水試所大力推廣「單性吳郭魚」,使吳郭魚養殖進入商業化階段,並開始出口至歐、美、日本等國。經過多年的研究、改良與認證,逐漸成為獨特種系, 約二○○二年業者將之稱為「台灣鯛」,用於內銷及外銷日本,外銷歐美國家則稱為Taiwan Tilapia,是台灣最具經濟價值的一種養殖魚類。(作於2012年6月28日)

The post 從吳郭魚到台灣鯛——科學史札記(三) appeared first on PanSci 泛科學.

發現出血性登革熱的治療黃金期!

$
0
0

2014 與 2015年台灣南部都爆發嚴重的登革熱(Dengue fever)疫情,其實不只台灣,全世界每年有超過五億人感染登革熱!其中 80% 是無症狀或輕症,只有 5% 的病患會出現較嚴重的症狀。

登革熱以數種黑斑蚊屬(Aedes)為病媒散播,原本只出現在東南亞,在二次世界大戰後變成遍佈全球的疾病。如今全世界有 110 個國家都有登革熱,每年造成一萬至兩萬人死亡。

一般來說,登革熱的死亡率低於 1%,但如果是第二次感染或是嬰兒第一次感染,但媽媽曾感染登革熱,便有機會發展成出血性登革熱(Dengue Haemorrhagic Fever,簡稱DHF)。出血性登革熱患者會出現皮膚紅斑、臟器出血、伴隨著血小板低下等症狀。一旦發展成出血性登革熱,即使有治療,死亡率也會達到 2-5%,若沒有治療則可高達 50%,實在是非常危險。

近年來,由於全球暖化與人口移動頻繁,使得登革熱漸漸成為一種全球性的傳染病;雖然一般的登革熱症狀不嚴重、死亡率也低,但是出血性登革熱的威脅卻不可忽視。特別是登革熱輕症常被誤會成流感,若患者身體健康良好,很可能就自己去購買成藥服用,因此疫區內的人們,誰也不敢保證一旦罹患登革熱,究竟會不會就發展成出血性登革熱呢?

過去的研究知道,出血性登革熱是因為登革病毒感染會引發自體抗體(autoantibodies)的產生;這些抗體在體外的(in vitro)研究中發現,在登革病毒存在時,它們與病毒形成複合體,大量感染白血球,可能因此造成血管內皮細胞與血小板被大量的攻擊,造成血管損傷、血小板數目低下,最後造成皮下出血、臟器出血等病徵而死亡。

但是後續有許多研究發現,許多病毒在有抗體存在的狀況下都會有此現象。因此,究竟出血性登革熱是否真的是因為上述的現象而發生的呢?

慈濟大學生命科學院院長張新侯老師的研究團隊,花了好幾年的時間精益求精,建立了出血性登革熱的小鼠模型。為什麼要建立這個模型呢?由於出血性登革熱發生時,病人會因為血小板太少造成的內出血使得血壓急速降低而休克,產生所謂的登革熱休克症候群(Dengue Shock Syndrome,簡稱 DSS)。DSS 非常危險,若能提供動物模型作為治療的測試、從而建立有效治療的方法,便足以挽救上萬條生命!

不過,要發展一個理想的小鼠模型,實在不是一件容易的事。張老師的研究團隊,一開始嘗試著以靜脈注射的方式,分別將登革病毒與登革病毒所誘發的自體抗體各自打入小鼠。小鼠不但沒死,而且解剖時也發現,小鼠的臟器只有紅腫,沒有出血。

這令人有點傷心,雖然小鼠不是人,或許因此症狀有不同;但沒能夠呈現與人一樣的症狀,的確是不夠完美。究竟要怎麼改善,才能夠建立一個十全十美的小鼠模型呢?

張老師苦苦地思索著,卻想不出改善的空間在哪裡?直到有一天無意中看到了施瓦茨曼反應(Shwartzman)的文獻。

1920 年代,在紐約西奈山醫院工作的喬治.施瓦茨曼醫師(Dr. George Shwartzman)在研究某些毒素如何在組織中產生血栓時,發現了這個現象。簡單來說,施瓦茨曼醫師發現,當我們的組織再次接觸到同一個毒素時,便會有這樣的現象發生。而要產生施瓦茨曼反應,病患要跟相同的毒素接觸兩次。但是,在施瓦茨曼反應裡,毒素是以皮下注射,而不是以靜脈注射的方式。

皮下注射?張老師忽然想到,或許皮下注射才是對的!

於是,張老師便趕緊將病毒改為皮下注射方式打入小鼠。結果真是令人喜出望外!果然出現了臟器出血的病徵!完美的出血性登革熱的模式有了!

模式有了,接著就有得忙了!再接再厲地以這個模式進行研究時也發現了,出血性登革熱需要在登革熱病毒與自體抗體同時存在的狀況下才會出現,缺一不可。但是,病毒與抗體究竟誰要先出現,並沒有絕對的關係。

怎麼說呢?以嬰兒出血性登革熱為例,小寶寶是先由媽媽得到登革熱的自體抗體後,再接觸到病毒。而成人在第二次感染時所發展出來的出血性登革熱,則是先有病毒再有抗體。

張老師的研究團隊也進一步在小鼠中證明,當以出血性登革熱病人血中登革病毒效價與非致病濃度之自體抗體同時存在於宿主體內時的確會造成血管損傷與臟器出血!這是第一次在活體中(in vivo)明顯到觀察到這樣的現象。過去其他研究團隊都只能以高量的病毒來重現出血性登革熱的症狀,但是在活體內要有這樣高濃度的病毒很難啊!可是這次張老師的研究團隊卻是以較低濃度就達成了!

張老師的研究團隊,除了建立小鼠的出血性登革熱模型之外,他們同時也以數種目前已經有在使用的藥物,如:腫瘤壞死因子α(TNFα)的拮抗劑 Etanercept 等,針對這個模型進行試驗,發現這些藥物如果在適當的時機下使用,對於出血性登革熱是有治療效果的;同時也對於出血性登革熱的致病機轉有更多的了解。

TEM 顯微鏡下看到的登革熱病毒,在圖中黑黑圓圓聚集成一群。圖/wikipedia

TEM 顯微鏡下看到的登革熱病毒,在圖中黑黑圓圓聚集成一群。圖/wikipedia

張老師的團隊在建立小鼠模型的過程中,也發現出血性登革熱存在著一個「治療黃金期」。如上圖所示,當病毒進入宿主體內後,病毒的濃度大約在發病(發燒)前一天開始上昇(viral load,藍色三角形);而自體抗體則在發燒後兩天開始出現(DENV-elicited autoantibodies,綠色三角形)。在這段期間,病毒的濃度持續升高,直到自體抗體出現後,病毒濃度開始下降。下降後大約 24-36 小時,出血性登革熱(DHF,紅色)的症狀就出現了。

圖/Thrombosis and Haemostasis

圖/Thrombosis and Haemostasis

治療黃金期在哪裡呢?就是當病毒濃度在體內達到高峰並開始下降、體內的自體抗體卻逐漸上昇的時候。研究團隊利用這個小鼠模型,測試了幾種藥物(如 Etanercept、IVIg)都有不錯的療效,但因為它們都屬於免疫抑制劑,若使用於發病初期,只怕會對病人有不好的影響;但如能用在病毒濃度開始下降、自體抗體濃度上昇,但出血的症狀尚未出現的時候,對於出血性登革熱的治療應該會有相當好的效果。

參考文獻

Te-Sheng Lien et. al. 2015. Dengue virus and antiplatelet autoantibodies synergistically induce
haemorrhage through Nlrp3-inflammasome and FcγIII. Thrombosis and Haemostasis. http://dx.doi.org/10.1160/TH14-07-0637. 113: 1060–1070

The post 發現出血性登革熱的治療黃金期! appeared first on PanSci 泛科學.

恐龍滅絕後,地球上還剩下那些生命?──《生命的故事:演化》

$
0
0

6600 萬年前 ~ 2300 萬年前 ︱古第三紀 Palaeogene Period

古第三紀的生物群像。

古第三紀的生物群像。

白堊紀的晚期經歷了另一場生物大滅絕,一般相信是因為一顆巨大的小行星撞擊地球,導致恐龍和許多早期生物徹底滅絕。由於恐龍都死了,有些食蟲的小型哺乳類便演化成體型較大的食肉種類,例如裂肉獸(Sarkastodon)會吃較大的食草動物。

裂肉獸

裂肉獸Sarkastodon,食肉的哺乳類),生存在 3500 萬年前,肩高約 1.8 公尺,體長約 3 公尺,體重約 1.5 頓,擁有粗壯的身軀和肥厚的尾巴。

古第三紀早期最受矚目的是出現兩種新的動物類群:一類是奇蹄的有蹄類,例如長得像馬的爪獸(Chalicotherium);另一類是偶蹄的有蹄類,像是鹿。很多其他動物的早期種類也開始出現了,像是蝙蝠、蜂類、靈長類和囓齒類。隧蜂(Halictus)是蜂類的一個類群,出現時間可回溯到這個時代,至今仍到處嗡嗡飛行。

這個時期一開始不但氣溫很高,海水也很溫暖,這意味著阿拉斯加能長出棕櫚樹,連北極都有鱷魚。這個時期還留下一種重要的化石,稱為走鯨(Ambulocetus),這種奇怪的動物看起來像是巨大水獺和鱷魚的綜合體,一般認為牠連結了鯨豚的陸生祖先和鯨類之巨蟻 (Titanomyrma)間的形態。走鯨會在海中游泳和覓食,也可以在陸地上行走。

走鯨

走鯨Ambulocetus,鯨類的水陸兩棲祖先)又名陸行鯨,生存在 5000 萬年前,是一種早期的鯨魚,約有3公尺長,可以同時行走及游泳。

到了古第三紀的中期,地球慢慢冷卻下來,落葉樹的數目漸漸超過熱帶樹種。隨著地球變得越來越冷且乾燥,森林再也無法存活,於是禾草類植物擴散到更多的開闊地區。禾草類的優勢是一被吃掉就立刻長回來。禾草類也含有二氧化矽,會破壞許多食草動物的牙齒。只有少數的哺乳類,包括囓齒類,以及馬、綿羊和牛的祖先,最後演化出不斷生長的特殊牙齒,才能順利的一直吃草。

在這個時期,昆蟲繼續繁衍茁壯,例如體長達到五公分的巨蟻(Titanomyrma),可以快速行走穿越平原。


 

生命的故事:演化》,遠流出版。

在地球46億年的漫長歲月中,生命從初始的單細胞生物緩慢而持續演化為多細胞生物。從海洋到陸地,從陸地到天空,億萬種生物合奏出繁花似錦的生之樂章。

本書由知名藝術家繪圖,概述浩瀚壯闊的地球生命演化史。從微小細菌到龐大猛瑪象,從原始蕨類到高等蘭花,詳盡羅列82種演化史上的代表性生物,展現生命豐美的多樣性,演繹令人驚嘆的生命故事!

The post 恐龍滅絕後,地球上還剩下那些生命?──《生命的故事:演化》 appeared first on PanSci 泛科學.

寒武紀大爆發「爆」出了哪些神奇生物?──《生命的故事:演化》

$
0
0

5 億 4100 萬年前 ~ 4 億 8500 萬年前 ︱寒武紀 Cambrian Period

寒武紀

寒武紀大爆發後,各式各樣生物在海底蓬勃生長,有些動物類群直到今天依然活躍。

寒武紀見證了地球生命多樣性的大爆發,以及許多主要動物類群的誕生,有些類群直到今天依然活躍。牠們大部分生活在水裡,而且很多都住在淺海地帶,例如軟體動物、蠕蟲樣的動物和海綿。

究竟是什麼因素點燃了寒武紀驚人的新生命大爆發,目前並不清楚。也許因為大氣層的氧氣含量增加了,或者與變暖的氣候有關。這些新誕生的許多生物都是身體堅硬的節肢動物,也就是昆蟲、蜘蛛和甲殼類的祖先。牠們的堅硬身體不但可防禦其他生物的攻擊、以免被當作食物吃掉,也可作為身體骨架而長成較大的體型。

21

奇蝦Anomalocaris,寒武紀最大型的掠食者)在寒武紀海洋中分布廣泛,在中國、北美和澳大利亞都曾發現牠的化石。

這個時期出現一群新穎的節肢動物稱為三葉蟲(trilobite),是最早擁有複眼的動物奇蝦 (Anomalocaris)之一。牠們留下大量的化石而為人所知,身長從只有一公分到超過七十公分都有。很多三葉蟲的樣本是從加拿大卑詩省的伯吉斯頁岩地層挖掘出來,當地的化石保存得近乎完美,化石印痕不僅包括蟲身的堅硬部分,像是外殼和牙齒,也包含肌肉、鰓和消化系統,讓專家對三葉蟲的生活方式得到許多重要線索。由於這個地點的化石保存了蟲身的柔軟部分,因此科學家能夠同時研究此地發現的其他無脊椎動物,像是錢包海綿(Crumillospongia),這是一種大型囊狀海綿,與人類至今持續採集的浴用海綿是近親。

在寒武紀的海洋裡,最令人喪膽的捕獵者之一便是奇蝦(Anomalocaris)。牠擁有堅硬的外殼,捕食三葉蟲和其他節肢動物、蠕蟲和軟體動物。這些捕獵者不斷演化,牠們的獵物亦然。生活在海底的風蟲(Wiwaxia)發展出鱗片和棘刺以保護自己。渾身是刺的怪誕蟲(Hallucigenia)也有類似招數――牠用七對腳站起來,聳起背上的兩排脊刺;怪誕蟲全盲(有學者認為牠有眼點),所以靠著背上的脊刺作為防護。

怪誕蟲

怪誕蟲Hallucigenia,有腳和極次的有爪動物),生活在約 5 億 3 千萬年前的海洋中,古生物學家誤以為它身體上規則分佈的兩排刺是用來走路的腿,而把本用來走路的腿誤作裝飾品,認為這樣的奇幻生物「只有做夢才能夢到」,所以命名為怪誕蟲。


 

生命的故事:演化》,遠流出版。

在地球46億年的漫長歲月中,生命從初始的單細胞生物緩慢而持續演化為多細胞生物。從海洋到陸地,從陸地到天空,億萬種生物合奏出繁花似錦的生之樂章。

本書由知名藝術家繪圖,概述浩瀚壯闊的地球生命演化史。從微小細菌到龐大猛瑪象,從原始蕨類到高等蘭花,詳盡羅列82種演化史上的代表性生物,展現生命豐美的多樣性,演繹令人驚嘆的生命故事!

The post 寒武紀大爆發「爆」出了哪些神奇生物?──《生命的故事:演化》 appeared first on PanSci 泛科學.


誰才是你身體的主人?──《我們只有10%是人類:認識主宰你健康與快樂的90%細菌》

$
0
0

你的交往對象其實是微生物幫你決定的?

特殊的費洛蒙對動物來說相當重要,不論牠是否有囊袋調製「愛的藥水」。果蠅,牠們的身體只較針頭稍微大一些,但說到交配,牠們可是特別難取悅。二十五年前,演化生物學家迪安娜.陶德(Diane Dodd)做了一個實驗,將同一個物種分開飼養,看能否藉由不同的飼養方式改變牠們的能力,使牠們轉變成兩個不同的物種。她將果蠅分成兩組,並且用兩種不同的食物餵食——麥芽糖及澱粉類食物,就這樣培養了二十五個世代。當她再次將這些果蠅放在一起,發現兩組果蠅不會互相交配,「澱粉組」會和「澱粉組」的果蠅交配,「麥芽糖組」會和「麥芽糖組」的果蠅交配,而且不會搞混。

SONY DSC

果蠅的擇偶對象和牠們腸道裡的細菌息息相關。圖/David Marquina Reyes@flickr

當時人們並不清楚原因,然而到了二○一○年,臺拉維夫大學的吉爾.夏隆(Gil Sharon)對那次實驗的結果有了新的想法。他重做了一次陶德的實驗,並且得到了相同的結果——A 組果蠅拒絕和 B 組果蠅交配——而這次他只培養了三個世代。為什麼會有這種喜好上的改變?夏隆猜測不同的食物不止改變了果蠅腸道的微生物群系,也改變了牠們性費洛蒙的氣味。接著,夏隆使用抗生素殺死了果蠅體內的微生物,那些果蠅果然不再挑選交配的對象。沒有微生物,果蠅無法製造出特殊的氣味。若是重新注入兩組不同果蠅身上的微生物群系,甚至會讓它們恢復原本挑剔的行為。

在你抗議將果蠅的實驗結果套用到人類身上是過度推斷之前,我先來說明事情的來龍去脈。果蠅的微生物群系——事實上是單一菌種:胚芽乳酸桿菌(Lactobacillus plantarum)——顯然改變了覆蓋在牠們身體外層的化學物質,一層性費洛蒙。人類也會受性費洛蒙影響。有一個著名的實驗,研究人員讓瑞士伯恩大學的女同學選擇男同學睡覺時穿過的 T 恤,依照喜好排出順序,結果女生挑出來的最喜歡的男生,往往有著與自己反差最大的免疫系統。這個理論說明女性藉由選擇與自己相異的基因組合,提供後代一個能夠應付雙倍挑戰的免疫系統。也就是說,女孩可以透過嗅覺審查男孩的基因組,替孩子尋找最合適的父親。

pheromone24n-1-web

你身上微生物產生的氣味,也許才是你能不能把到正妹的關鍵。圖/nydailynews

男同學在 T 恤上留下的氣味,正是由皮膚上的微生物群系產生。這些居住在腋下的微生物將汗水轉換成味道,四處飄散,不論這味道是好聞或難聞。腋下及鼠蹊部的汗水,以及那裡可能生長的毛髮,的確不太像是人體冷卻系統的一部分,反而比較像是鞘尾蝙蝠翅膀上的香水袋,調製出每個人獨特的味道。若依照小鼠實驗的經驗來判斷,男學生皮膚上的主要微生物群系至少有一部分是來自他基因的結果,包含決定他擁有的免疫系統的基因。儘管女同學不知情,她們仍可利用微生物群系傳遞的訊息,找到對自己最有利的基因組合。

在 T 恤實驗中,服用避孕藥的女同學選中的,幾乎都是和自己有相似免疫系統的男性。避孕藥中的荷爾蒙顯然徹底反轉了她們下意識的巨大力量,更別提除臭劑及抗生素會帶來什麼樣的毀滅性影響。

如果受微生物影響的性費洛蒙是挑選交配對象的第一步,我們可以考量將親吻做為下一個評估項目。親吻看起來像是人類獨有的行為,也可以說是文化的現象,藉由這個動作來表現佔有欲,甚至像他人宣示主權,但是以一種較溫和的表現方式。事實上,我們並不是唯一會接吻的動物,黑猩猩等靈長類動物,甚至很多其他動物也會,這讓我們可以從生物學的觀點來討論親吻的目的。

接吻,可以看作為了建立關係而交換唾液及細菌,尤其是與某個非親屬的人嘴對嘴,進行舌頭上的接觸。這看起來似乎是一種高風險行為,天曉得他可能會有什麼病。但或許這才是重點,在你可能讓自己以及未來的孩子受到那些細菌攻擊之前,先打探父親候選人身上帶有哪些細菌。不只如此,親吻也可以帶給你對方身上的細菌樣本,藉此嚐一口對方的基因及免疫力。透過親吻,我們也在決定是否要信任眼前這個人,不論是基於情感還是生物學。

如同微生物影響人類行為的想法一樣奇怪,藉由生物學的方法提升自我改善的可能性也漸漸被重視。如果微生物可以解釋這一切,你就不必再花大錢去看心理醫生,而醫生總是期望你去挖掘童年時期令人沮喪的陰暗角落。微生物可以幫助你省下那些金錢和痛苦。

活菌讓你更快樂

在法國一項臨床實驗中,研究人員將五十五名正常、健康的志願受試者分成兩組——這次是人類——其中一組每天吃一根水果口味的糖果棒,裡頭包含兩種活菌,另一組也吃一樣的糖果棒(安慰劑),但沒有加細菌。一個月後,吃了活菌的受試者比接受實驗前更快樂、更不容易憂慮和生氣,而且這些改變已經超越了安慰劑效應(註:安慰劑效應,又名偽藥效應或代設劑效應,指病人雖然獲得無效的治療, 卻「預料」或「相信」治療有效,而讓病症得到舒緩的現象。)。

儘管這個實驗小而簡單,卻讓我們看見一條值得繼續探索的道路。吃下活菌為什麼可以讓人感到更快樂?這和一個潛在的生物機制與調節情緒的化學物質——血清素(serotonin)——有關。這種神經傳導物質主要存在於我們的腸道內,負責讓一切維持完好運作。大約有百分之十的神經傳導物質存在於大腦內,負責調節情緒及記憶。若是我們吃下肚的活菌可以直接進駐腸道,立刻大量提供神經傳導物質,這將會是多麼簡單的一件事!然而事情當然沒有這麼簡單。當我們吃下活菌,可以增加血液中另一個化合物質——色胺酸(tryptophan)——的濃度,這個可以讓人產生幸福感的小分子會直接轉變成血清素。憂鬱的病人血液中的色胺酸含量確實較一般人低,飲食習慣中色胺酸攝取量(蛋白質含有此物質)較低的國家自殺率較高,身體中的色胺酸若是被用盡了,可能會讓人們感到短暫卻徹底的沮喪。一個人血液中的色胺酸濃度較低,表示他的血清素也較少,進而代表他可能較不快樂。

這項生物機制的迷人之處在於,吃進活菌之所以會造成色胺酸增加,並不是因為細菌製造了色胺酸,而是因為細菌阻止了免疫系統摧毀身體製造的色胺酸。這個驚人的想法不只是生物學上的大進展,在其他領域也是。這讓我們越來越清楚一件事:過敏、肥胖症及憂鬱症都有可能是免疫系統失調所導致。我們待會兒再回來討論這個問題。

我想先告訴你們另一個「細菌能讓人開心」的生物機制,這牽涉到迷走神經——從頭腦延伸到腸道的主要神經,途中分岔出許多分支連接不同的器官。神經就像是電線,藉著傳遞微小的電子脈衝來傳遞指令或改變感覺。迷走神經會將腸道運作的訊息——它正在消化什麼東西,它的活動力如何等等——傳到大腦,其特別之處在於,它也會將腸道的「感覺」傳到大腦,也就是我們所謂的「直覺」。當人們緊張時,會說「胃裡好像有蝴蝶在飛」(butterflies in the stomach),那個胃指的其實是腸子,而緊張的確會讓你的腸子開始蠕動,並且藉由迷走神經將訊息傳遞至大腦。

download (4)

或許你聽了不會太訝異,但電子脈衝沿著迷走神經衝上大腦的過程也能夠讓人感到快樂。醫生利用這個方法來治療無法以化學或行為科學治癒的嚴重憂鬱症病患,這個療程稱作迷走神經刺激。他們將一個小型裝置植入病人的脖子,這個裝置周圍有金屬絲線,由外科醫生小心地將線包覆在迷走神經上,再將另一個電池發電器植入胸口,提供電子脈衝以刺激神經。經過幾週、幾月和幾年之後,這個幸福的起搏器使病患變得更穩定且快樂。

將電子脈衝裝置與迷走神經連接在一起,可以促進神經活動、振奮心情。在正常情況下,這些電子脈衝含有一個化學物質,功用類似家用電池。這些啟動神經衝動的化學物質稱作神經傳導物質,而你或許已經聽過血清素、腎上腺素、多巴胺、催產素等等。這些物質大部分都是由我們的身體合成,它們會在神經末梢引發出微小的電位刺激。但是神經傳導物質並不全由人類細胞製造,我們的細菌也參與其中,它們也會製造同樣功能的化學物質,刺激迷走神經並且與大腦溝通。這些微生物就像是天然的電子脈衝裝置,使人心情變好。我們還不清楚它們為何能產生這樣的效果,但我們確定它們的確會這麼做。

一個說法是,藉由影響我們的心情,微生物群可以控制我們的行為以圖利。譬如說,想像一下,某種細菌以我們食物中的某種特別化合物為生,如果我們吃了那種食物,將會供給這些細菌養分,而它們就會生產一劑令我們開心的化學物質來「回報」我們,這麼做對它們來說只有益而無害。它們在我們體內產生的化學物質,會使我們渴望獲得那種食物,甚至讓我們記得是在哪裡吃到的——在從前可能會是一棵果樹,現在可能是某間麵包店——好讓我們再度光臨那個地方。

我們吃越多細菌想吃的食物,菌群就能持續蓬勃生長,產生越多化學物質,越加深我們對那種食物的渴望。

download (3)

讓我們回到免疫系統對大腦的影響。當身體為了抵抗外來的惡意攻擊而進入高警戒模式, 免疫系統會分泌一種叫做細胞激素(cytokines)的化學物質,當它們颼颼地在體內飛馳,有時會造成不必要的傷害。細胞激素會鼓動免疫系統的士兵,使它們準備作戰,但如果沒有敵人入侵,它們很有可能會誤傷自己人。

憂鬱症似乎不是好戰的免疫系統對神經系統造成的唯一負面結果,先前提過的其他精神疾病患者,也有免疫系統過度活躍的跡象,例如發炎反應。過動症、強迫症、躁鬱症、精神分裂症,甚至帕金森氏症及失智症,都有類似的現象。法國的臨床實驗則顯示,讓腸道充滿益菌對免疫系統有鎮定的效果,不僅可以防止色胺酸被破壞,使人更快樂,還可以減少發炎。


 

我們只有10%是人類:認識主宰你健康與快樂的90%細菌》,三采出版

腸子裡的細菌會影響我們的個性?
皮膚上的細菌會影響我們挑選喜歡的對象?
如果你覺得這些問題很不可思議,你該繼續看下去。

過敏、肥胖症、憂鬱症,全是因為免疫系統失調?
自閉症的起因,源自於腸道裡的細菌?
細菌和抗生素,誰才是害你生病的兇手?

你的全身上下,只有百分之十是人類。你的每十個細胞中,就有九個是搭便車的冒充者。我們的身體不僅是由肌肉和骨頭所構成,還有細菌及真菌。

The post 誰才是你身體的主人?──《我們只有10%是人類:認識主宰你健康與快樂的90%細菌》 appeared first on PanSci 泛科學.

長壽的秘密藏在基因裡(上)

$
0
0

從古自今,很多人都在尋找長壽的秘密,像是秦始皇派徐福入海,尋找仙山上的長生不老藥;而到了唐朝,煉仙丹竟成了一種職業!由此可見人們對於長生不老的嚮往與重視,直到今天我們仍在想辦法讓自己活得更好、更久一點。因為科技的進步、研究方法的提升,研究人員可以用各種角度去解析延長壽命的方法,不管是從飲食調整或到環境的因素等等。近年來,科學家也嘗試尋找「長壽因子」,或許這從古到今人們都在苦苦追尋的秘密,就藏在我們自己的身體裡。

胺基酸來也  自由基退散

其中一部分的科學家是從「胺基酸」中尋找可能的目標。

人體中重要的胺基酸總共有 22 種,其中有 8 種是人體無法自行合成、只存在於食物之中的「必需胺基酸」,而由於不同物種的化合能力,必需胺基酸對於不同物種可能會是不同的。人體的八種必需胺基酸分別為:色胺酸(Tryptophan)、離胺酸(Lysine)、甲硫胺酸(Methionine)、苯丙胺酸(Phenylalanine)、異白胺酸(Isoleucine)、羥丁胺酸(Threonine)、結胺酸(Valine)、白胺酸(Leucine)。

535px-L-leucine-3D-balls

白胺酸。

其中,白胺酸、異白胺酸與結胺酸統稱為支鏈胺基酸(Branched-chain amino acid, BCAA),因為他們的結構上含有支鏈。有在健身、想要藉由高蛋白增肌的人對於 BCAAs 應該很熟悉,支鏈胺基酸可以共同合作,藉由促進胰島素與生長激素的釋放,控制血糖以及幫助內臟脂肪的燃燒,而這些有助於健身過後的肌肉修復以及促進肌肉的增長。

BCAAs 已被證實可以延長酵母的壽命,但是對於哺乳類動物尚是未知的。在 2010 年的 Cell Metabolism 期刊中有篇實驗證實,利用富含 BACC 的混和物(BACCem)可以延長老鼠的平均壽命。在實驗過程中,研究人員在老鼠的飲用水當中加入了 BACCem,而發現老鼠的平均壽命從 774 天延長到了 869 天,換而言之,支鏈胺基酸可以延長老鼠壽命12%。

支鏈胺基酸除了可以延長老鼠壽命以外,同時也使老鼠的細胞可以攝取更多的能量、減少自由基等等。自由基是在不完整氧化過程中所產生的,它具有強大的氧化性,而當自由基結合到蛋白質、DNA,或是其他的細胞構造,並加以破壞時,可能會引發慢性疾病或是衰老。而經過補充 BACCem,老鼠顯得更有活力,同時肌肉的協調能力也增加了。

線蟲中發現延長壽命基因

除此之外,科學家當然也想看看,人體內是不是有一些特別掌管老化、退化的基因?如果把那些基因的功能關掉,是不是也是一個讓我們「青春不老」的方法?

2015 年瑞士蘇黎世聯邦理工學院的科學家就發現了一個參與生理老化的基因—— bcat-1(branched-chain amino acid transferase-1),也就是支鏈胺基酸轉移基因。他們試著減少線蟲(Caenorhabditis elegansbcat-1 基因的表現,發現可以有效延長線蟲的壽命。而且不只是線蟲,目前研究結果顯示在斑馬魚以及小白鼠身上都成功有效。這個研究發表在 Nature Communications 期刊中。

640px-Caenorhabditis_elegans

線蟲。

然而這個基因又是怎麼被發現的呢?

研究者針對線蟲、斑馬魚和小白鼠這三種不同生物體的基因組表現亮進行搜尋,利用生物資訊的分析方法,找出共同擁有並且與老化過程相關的關鍵基因。

他們檢測了動物細胞中訊息 RNA(mRNA)的表現量來衡量基因的活動程度,當一種基因含有許多的 mRNA,則表示其十分的活躍,而反之則代表該基因的活性較低。而透過阻斷相關基因的 mRNA(也就是阻斷相關基因的運作),研究者們發現阻斷了十幾個相關基因,則可以使線蟲的生命延長 5%。

其中,特定的 bcat-1 基因對於動物壽命有極大的影響,那麼到底 bcat-1 是怎麼運作的呢?bcat-1 基因會先轉錄成mRNA,進而在產生 bcat-1 酶(支鏈胺基酸轉移酶),它會導致 BCAA 分解,並影響到肌肉增長與脂肪燃燒等等。

在實驗中阻斷 bcat-1 基因時,會使支鏈胺基酸在組織中堆積,從而引起分子信號間的串連,進而延長線蟲壽命(多達 25% 的壽命),並保持健康。

然而,bcat-1 並不是科學家們發現的第一個與長壽相關的基因,而還有哪些其他長壽基因呢?請繼續看下篇

The post 長壽的秘密藏在基因裡(上) appeared first on PanSci 泛科學.

長壽的秘密在基因裡(下)

$
0
0
pexels-photo (1)

圖/unsplash.com, CC0

從古到今大家都在找長生不老的秘密,現代科學家使用分子生物的方式,從我們的基因中探索,真的發現一些基因和壽命的長短有關。在上篇中談到支鏈胺基酸(BCAA)延長了小鼠的壽命,還有抑制 bcat-1 基因也能延長多種模式生物的壽命,這就是解開長壽的秘密了嗎?當然還沒,讓我們繼續看下去……

人瑞體中的FoxO3a 基因

除了 bcat-1 基因以外,更早在 2008 年 Bradley Wilcox 博士帶領的研究團隊,在《美國國家科學研究院學報》中發表一份研究報告,表明接受基因檢測的 3700 多位 95 歲以上的日本老翁體內,普遍存在著 FoxO3a 基因。

在隔年,德國基爾大學醫學院調查 388 位德國老翁的基因,發現存在於日本人瑞體內的長壽基因 FoxO3a,在其他種族的體內也普遍存在,同時該基因的影響不受種族與性別的限制。由此一系列研究發現,在高等生物中,甚至人類體內也依然有「長壽基因」的存在。

台灣發現藏在四號染色體中的長壽秘密

在台灣,2009 年陽明大學生命科學系蔡亭芬老師帶領的研究團隊,首度證明了在人類第四號染色體中的 Cisd2 基因可以決定人類的老化、衰老以及調控哺乳類動物的壽命。這個發現和 2001 年哈佛大學的研究相呼應,當時哈佛大學研究團隊對於 137 個長壽家庭以及 300 多名人瑞做基因分析,就已經發現長壽基因可能存在於第四號染色體上。這些研究讓 Cisd2 這個在遺傳上高度被保留下來的基因,受到矚目。

Exif_JPEG_PICTURE

發現 Cisd2 的陽明大學研究團隊,由左而右生科系暨基因體所蔡亭芬老師、國衛院蔡世峰老師,與生科系暨基因體所博士生陳怡帆。圖/陽明大學電子報

Cisd2 基因主要影響細胞中其中一種胞器——粒線體,Cisd2 基因所表現出來的蛋白質就存在於粒線體的外膜上,當 Cisd2 基因改變就可能影響粒腺體的結構和功能。而粒線體在我們細胞中負責能量的轉換,同時也可以儲存鈣離子,對於肌肉以及神經細胞有莫大的影響力。

為了更了解 Cisd2 基因的功能,陽明大學研究團隊試著將小黑鼠身上的 Cisd2 基因剔除,看會有什麼影響?結果他們發現這些小黑鼠的體型較為瘦小,也較早長出白毛,出現骨質酥鬆、駝背以及皮膚鬆弛等老化的現象,而且有 40% 在約七個月就死去,比起其他未剔除基因的小黑鼠平均兩年的壽命少了許多。仔細研究這些小黑鼠的細胞發現,一旦缺少了 Cisd2 基因, 牠們的粒線體會破損,功能也相繼受到影響,使得老化的症狀接踵而至。

目前蔡亭芬的研究團隊正深度的研究 Cisd2 基因,2015 年也發表一篇新的研究報告,這次他們要看Cisd2 基因在老鼠營養缺乏及飢餓反應中扮演的角色。他們發現飢餓的老鼠有較高含量的 Cisd2 訊息RNA(mRNA) 及蛋白質,也就是飢餓的小鼠體內 Cisd2 基因的表現量較高同時也證實剔除 Cisd2 基因的小老鼠表現較少的 FoxO3a(上述提到與人類長壽相關的基因),更進一步的能夠推論 Cisd2 基因除了是重要的調節角色,使老鼠在飢餓中能夠生存外,Cisd2 基因對於壽命的影響力也更加被背書。

這些都是動物研究,怎麼知道對人有效?

上篇提到瑞士蘇黎世聯邦理工學院的研究中,阻斷模式生物的 bcat-1 基因能夠有效延長他們的壽命,但是這與人類壽命又有什麼關係呢?

第一,這項研究中,研究者主要是針對那些在演化中高度保存下來的基因做研究,也就是說幾乎所有的生物體,包含人類都擁有這些基因,而 bcat-1 基因就是其中之一。

再者就是研究人員的推論,要了解為何研究人員能夠這般的推測,首先要談到 bcat-1 基因的運作方式。bcat-1 基因會產生 bcat-1 酶,而 bcat-1 酶會導致 BCAA(支鏈胺基酸)分解。這個被 bcat-1 酶分解的 BCAA 的主要功能為:促進生長激素的釋放,其中有些激素已被證實與人類的壽命延長有相關性,所以研究人員推論當我們能夠去抑制 bcat-1 基因,BCAA就不會被分解,或許就可以增加這些能延長我們壽命的激素釋放出來。

補充這些長壽因子就會長生不老?

所以我們一直補充 BCAAem 或是生長激素就可以長壽了嗎?

並非如此!我們以 IGF-1(類胰島素生長因子)為例,有研究證實 IGF-1 濃度偏高,罹患攝護腺癌、乳癌、腸胃道癌等癌症風險將增加;還有其他研究顯示,體內 IGF-1 的濃度若落在平均偏低的位子,則較容易表現較長的生命,但是過低或是過高的 IGF-1 濃度都有可能提高死亡率。從這裡我們就可以發現 IGF-1 不管太高或太低對我們而言都是危險的,並不能一味的去提升或抑制一個因子、基因的表現量!

人人都希望能夠長壽,阻斷 bcat-1 基因還需要經過證實才能確定是否對人類有效,而人類生長激素的補充,必須要在適當的時間攝入適當的量(千萬不要自己隨意補充)。其實在長壽基因的實驗中,最困難的是要如何推論這些對於模式生物有影響的因素,對於人類也會有相同的影響?同時,人們的壽命也不止受到基因的影響,還有環境以及飲食的因素,要如何去除這些干擾變數也是一大挑戰,但相信在這個科技快速進步的時代,科學家一定會找出長壽的秘方!

The post 長壽的秘密在基因裡(下) appeared first on PanSci 泛科學.

一次搞清楚造礁珊瑚與寶石珊瑚

$
0
0

文/戴昌鳳|台灣大學海洋研究所教授

大陸漁船在東沙大量採撈珊瑚、魚貝類和海龜的事件,再度讓珊瑚是否應禁止採捕成為關注焦點;另一方面,臺灣的珊瑚漁業也是眾人關心的議題。這兩件事看起來相似,事實上卻大不相同。前者採撈的是生長在淺海珊瑚,包括造礁珊瑚和紅扇珊瑚;後者則是生長在深海的寶石珊瑚;兩者的物種、價格、生態環境和採撈方法都大不相同。

珊瑚泛指會堆積碳酸鈣骨骼或骨針的刺細胞動物,包括水螅珊瑚、六放珊瑚和八放珊瑚等三大類,其中,水螅珊瑚的珊瑚蟲個體很小,呈細毛狀,觸手不明顯,而且種類較少;六放和八放珊瑚則是珊瑚類的大宗,牠們的珊瑚蟲和觸手都比較明顯,區別在於六放珊瑚的觸手是六的倍數,八放珊瑚則剛好八隻。在地理分布上,兩者從熱帶到寒帶、從淺海到深海都有分布,而以熱帶淺海的種類最多,最密集。當許多珊瑚的鈣質骨骼聚集和膠結在一起,形成堅固的立體結構,可以抵抗波浪,也可以讓許多生物居住或當作避難所,就成為珊瑚礁。 珊瑚礁是海洋中的綠洲,也是生機旺盛的海洋生態系,至少有數萬種生物依賴珊瑚礁生存,因此被認為是全球海洋保育的焦點。

造礁珊瑚多分布於淺海  但深海珊瑚也會造礁

珊瑚礁主要分布在熱帶至亞熱帶淺海;由於造礁珊瑚體內有共生藻,需要充足的陽光來行光合作用,以支持牠們的生長和造礁,因此幾乎都生長在水深 50 公尺以淺的海域。這些造礁珊瑚以六放珊瑚為主,牠們生長快,一年可生長數公分以上;八放珊瑚雖然也是淺海珊瑚礁的主要成員,但只有少數種類具有造礁功能,包括藍珊瑚、笙珊瑚和一些指形軟珊瑚等。

深海珊瑚是指分布在水深 50 公尺以深海底的珊瑚,包含六放和八放珊瑚種類;這些珊瑚體內沒有共生藻,完全仰賴捕食浮游動物或有機顆粒維生;牠們的生長緩慢,通常一年只長 1~2 公釐,因此長期以來被認為不會造礁,無重要生態功能;但是近二十年來,許多先進國家的深海探測都發現這些深海珊瑚可形成大型礁體,構成生物多樣性豐富的深海生態系,而且是許多海洋生物和漁業資源生存繁衍的關鍵棲地。這種深海珊瑚礁在大西洋、太平洋和印度洋都有發現,由於這些生態系普遍受到拖網漁業和環境污染的衝擊,因此受到廣泛重視,目前多處已被劃設為海洋保護區。

寶石珊瑚美麗的代價

深海珊瑚中最受矚目的就是寶石珊瑚。廣義上,任何可被當作珠寶販售的珊瑚,包括黑珊瑚、竹珊瑚,都可算是寶石珊瑚;狹義上則專指八放珊瑚亞綱的紅珊瑚科(Coralliidae)成員,牠們的價值高,也是珊瑚漁業的主要目標物種。紅珊瑚科全球共有 40 餘種,牠們通常生長在水深 100~2000 公尺之間的深海,只有分布在地中海的紅珊瑚(Corallium rubrum)可在水深僅 10 公尺的淺海發現;由於較易採集,早在二千年前就有地中海漁民採集紅珊瑚,當做珠寶販售的紀錄,這就是珊瑚漁業的起源。早期地中海的紅珊瑚經由絲路傳入中國,也經由海上貿易傳入印度和日本。此時期的寶石珊瑚由於產量稀少,而且是舶來品,價格非常昂貴。珊瑚被列為佛教七寶之一,代表佛祖化身;隨著佛教盛行,珊瑚在中國、日本和西藏都被當作寶物,代表財富與身分地位的象徵。

5258297472_b264cd1c04_z

紅珊瑚。圖/Arturo Donate@flickr

東亞的紅珊瑚採集顯然起步較晚。日本在 1870 年代發現琉球群島海底生產寶石珊瑚,於是發展出「纏繞網」來採撈這些深海紅珊瑚。這種網具使用石塊當作重錘,用來打落珊瑚,然後利用附掛的網子把珊瑚撈上來;當珊瑚漁船到達預定漁場,就放下網具,讓它隨海流漂動而打落、纏繞和採撈附著在海底山表面的珊瑚。這種漁法雖然不像拖網具有強大的破壞力,但是對於生長在底質表面的珊瑚和其他生物來說,仍然會造成嚴重的傷害;更何況這些珊瑚的生長速率緩慢,被開採過的漁場,往往需要很長時間才可復原。也正因為如此,每個新開發的珊瑚漁場都只有短暫的榮景,當產量大幅下降,就必須尋覓開拓新漁場。

日本珊瑚漁船沿著琉球島弧往南開拓漁場,1923 年在臺灣北部彭佳嶼海域發現寶石珊瑚,引進纏繞網採撈珊瑚,也開啟了臺灣的珊瑚漁業。初期以臺灣東北部和北部的海底山為漁場,並以南方澳為主要基地;然而榮景只維持數年,產量就銳減,於是再往南尋找新漁場;1934 年在澎湖海域發現有寶石珊瑚分布,又啟動澎湖南方的珊瑚漁業。

日治時期的臺灣珊瑚漁業,幾乎都掌握在日本人手中。二次大戰後,隨著日人撤離,臺灣珊瑚漁業曾經一度沉寂,其後藉著與日本人合作才逐漸恢復榮景,並且靠著臺灣漁民的勤奮和打拼精神,於 1960 至 70 年代達到生產高峰,珊瑚藝品加工技術也更為精進,建立臺灣為「珊瑚王國」的美譽。此時臺灣珊瑚漁船的採撈海域已經往南拓展到南海的東沙島附近。但是沒多久,珊瑚生產再度面臨困境,於是積極向外尋找拓展漁場的機會。

1980 年代,臺灣珊瑚漁船在夏威夷群島西北方的中途島和天皇海山鏈(Emperor Seamounts)發現豐富的寶石珊瑚資源,吸引大批漁船前往採撈,於是產量大增。根據聯合國世界糧農組織(FAO)的統計資料,臺灣珊瑚漁業在 1984 至 1986 年間的年產量都超過 350 公噸,產量大反而導致價格暴跌,其後隨著資源減少和美國政府的管制措施,產量在 1988 年之後就大幅滑落。其後,臺灣寶石珊瑚年產量大多低於 10 公噸,資源枯竭的警訊早已顯現。

國際上,自 2007 年起,美國和歐盟數度提議將寶石珊瑚列入華盛頓公約(CITES)二級保育物種,但是都被其他國家代表提出質疑,由於缺乏具體基礎資料而未能通過;然而,隨著國際海洋保育意識升高,資料逐漸累積,寶石珊瑚被列為保育物種應是遲早的事。原本我國漁業署也有意藉著珊瑚漁船逐漸汰舊不換新的方式,讓珊瑚漁業逐漸走入歷史。

停止開採 寶石珊瑚才有重新生長的機會

5122082306_172c1d1f23_z

死亡的珊瑚。圖/prilfish@flickr

但是在近年兩岸三通之後,由於寶石珊瑚深受中國大陸遊客喜愛而價格飛漲,自 2009 年以來,五年之間就飆漲約十倍。面對龐大的經濟利益和漁民請求,農委會漁業署改採開放登記及嚴審嚴管政策,於 2009 年訂定「漁船兼營珊瑚漁業管理辦法」,規定每艘漁船每年限捕 200 公斤,並限制在臺灣經濟海域內的五處漁區作業,作業時應開啟船位回報器,並填報漁撈日誌。雖然漁業署訂定的年總採撈量為六公噸,但是實際採撈量僅約三公噸;而且所採得的珊瑚中,90% 以上是「蟲枝」,也就是在海底死亡已久,被許多鑽孔生物蛀洞的分枝;其次是枯枝,即死珊瑚分枝;只有不到 2% 屬於活枝。從這些採撈記錄就可看出深海寶石珊瑚資源枯竭的慘狀,已經不是嚴格管理可以挽救,更不用談永續利用。

挽救深海寶石珊瑚資源的唯一途徑,其實就是停止採撈,讓牠們有重新生長和復育的機會;即使如此,恐怕也需數十年或百年以上時間,資源才會有些起色。但是在產業界每年高達百億的經濟利益和上萬從業人員可能失業的壓力之下,漁政官員無人願意承擔停止寶石珊瑚採撈的風險,最終結局可能是產業和資源兩敗俱傷。當海底的寶石珊瑚資源完全枯竭,珊瑚產業又將如何延續?

寶石珊瑚產業的解決方案也許是替代商品。寶石珊瑚的成分說穿了就是碳酸鈣和角質素(或稱珊瑚素),以現代科技生產人造珊瑚,其實並非難事;事實上,現今市場上販售的寶石珊瑚多有贗品,真假已難區分;如果利用工業生產而使寶石珊瑚回歸合理價格,並使深海珊瑚生態獲得生息和復原機會,應該是最佳方案。

原刊登於作者臉書網誌,經作者授權轉載。

The post 一次搞清楚造礁珊瑚與寶石珊瑚 appeared first on PanSci 泛科學.

跨動物與植物界的賀爾蒙

$
0
0

之前曾經有廠商張冠李戴,把植物的生長素當成了動物的生長激素,宣稱吃了含有生長素的植物果實恐怕會性早熟;其實植物的生長素與動物的生長激素相差得非常遠,也沒有任何證據顯示,植物的生長素可以當作動物的生長激素來使用。

動植物通用的賀爾蒙

不過,植物的六大賀爾蒙:生長素、細胞分裂素、芸苔素、乙烯、吉貝素與離層酸裡面,倒是真有一種是動植物通用的!這種賀爾蒙是離層酸(ABA,abscisic acid)。

355px-Abscisic_acid.svg_

離層酸(ABA)。圖/wikipedia

離層酸被發現跟動物有關,是 2001 年在海綿的研究。研究團隊發現,當海水溫度上昇(或機械壓力)時,海綿的陽離子通道會開啟,造成離層酸分泌上昇,接著便活化蛋白質激酶 A(PKA),啟動一連串的信息傳導,最後鈣離子上昇。這個發現,使得科學家們對這個植物賀爾蒙非常感興趣。離層酸在植物裡也主導了一部份的壓力反應(缺水、缺養分、紫外光照射),那麼高等動物是否也會分泌離層酸呢?

答案是肯定的。高等動物,包括人類,都會合成離層酸;但是人類合成離層酸的主要用途,卻不是用來處理壓力反應。離層酸在人體內,由與免疫相關的細胞負責合成:包括顆粒性白血球(granulocytes)、單核球(monocyte)以及巨噬細胞(macrophage),都會合成離層酸。更有意思的是,胰腺的 β 細胞(pancreatic β-cell)也會合成離層酸喔!而且 β 細胞要在受到葡萄糖刺激後,才會分泌離層酸呢!

由於 β 細胞的角色主要就是分泌胰島素(insulin)來調節血糖濃度,因此使得研究團隊覺得非常好奇。是否離層酸也與血糖調節相關呢?如果這樣,那麼口服離層酸是否會有調節血糖的效果?

於是,研究團隊找來富含離層酸的水果,並製作萃取物。為什麼要製作萃取物呢?因為做實驗,一定要有控制組;如果給實驗組吃了富含離層酸的水果、給控制組吃不一樣的水果或不吃水果,那麼控制組的人的心情可能會受到影響,或許就會讓實驗變得不準確。因此,研究團隊拿了(apricot)來製作萃取物,提供給參與實驗的對象(老鼠與人)與葡萄糖一起服用。

640px-Apricots_Drying_In_Cappadocia

正在曬乾的杏。圖/wikipedia, By Bjørn Christian Tørrissen – Own work by uploader, http://bjornfree.com/galleries.html, CC BY-SA 3.0.

結果發現,只要口服每公斤體重 0.5~1 微克(μg)的離層酸,就可以有效降低血糖和胰島素的分泌。而且吃得多的效果好,顯示了離層酸的確有降血糖的效果。

過去也有許多觀察發現離層酸與降血糖之間的關係。研究團隊發現,正常人在進行葡萄糖耐受性試驗時,血清中的離層酸濃度會上昇;但是類似的現象在第二型糖尿病病人以及妊娠糖尿病病人的血清裡是看不到的。而當第二型糖尿病病人進行膽胰分流手術(biliopancreatic diversion)一個月後,或妊娠糖尿病病人產後一個月,他們的血清離層酸濃度的變化,隨著血糖值回歸正常後,也跟著回復正常了。

獲取天然的離層酸

有趣嗎?這可說是另一個打破動植物疆界的發現,而且有許多觀察都發現,離層酸可能是經由刺激肌肉細胞加速吸收血糖,來達成降血糖的目的。由於血糖上昇的幅度小了,當然胰島素也不用分泌那麼多,於是胰島素的量也減少了。胰島素分泌量減少,還有「防肥」的效果唷!

相信讀者們看到這裡一定大為興奮,但想到臺灣不產杏大概又有點悲傷。除了杏以外,還有什麼水果富含離層酸呢?事實上,離層酸含量最高的水果是無花果,第二名是覆盆子(bilberry),第三名才是;不過第四名可是臺灣土產——香蕉喔!

不過,究竟離層酸在高等動物與植物之間,是否真的完全沒有扮演相同的角色呢?其實有的,人的角質細胞(keratinocyte)與阿拉伯芥(Arabidopsis thaliana)在受到 UV 照射時,都會先釋放離層酸,然後離層酸再引發一氧化氮(NO)的產生呢!

參考文獻:

  1.  Elena Zocchi, Armando Carpaneto, Carlo Cerrano, Giorgio Bavestrello, Marco Giovine, Santina Bruzzone, Lucrezia Guida, Luisa Franco, and Cesare Usai . 2001.The temperature-signaling cascade in sponges involves a heat-gated cation channel, abscisic acid, and cyclic ADP-ribose. PNAS  98 (26) 14859-14864
  2.  Mirko Magnone, Elena Zocchi et. al. 2015. Microgram amounts of abscisic acid in fruit extracts improve glucose tolerance and reduce insulinemia in rats and in humans. FASEB J. 29(12):4783-4793

 

本文原出自臺灣大學科學教育發展中心其他單位需經同意始可轉載。

The post 跨動物與植物界的賀爾蒙 appeared first on PanSci 泛科學.

Viewing all 594 articles
Browse latest View live


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>